DNA损伤和修复过程如何影响核内部核的生物力学特性。这里,基于时间域的光学显微镜(TDBS)用于研究诱导的核内力学的调节。使用这种超快泵探针技术,在核内纳米结构中沿其传播跟踪相干的声音子,并通过光学分辨率测量了复杂的刚度模量和厚度。骨肉瘤细胞暴露于甲基甲磺酸甲酯(MMS),并使用针对损伤信号蛋白的免疫检测测试DNA损伤的存在。tdbs表明,由于染色质反应和重组,核内存储模量在暴露于MMS时显着降低,这有利于细胞器内的分子扩散。去除破坏剂并在缓冲溶液中孵育2小时时,固定后,核内重组会导致储存模量的反向演变,核会僵硬。当DNA双链断裂是由细胞暴露于电离辐射引起的时,也测量了相同的趋势。tdbs显微镜还揭示了声学耗散的变化,纳米级核内组织的另一种机械探针以及在暴露于MMS和恢复后的核厚度的变化。
在集成的单模式激光器中生成超低线宽和高输出功率仍然是未来紧凑,便携式,精度应用程序的关键挑战。moreso,在激光设计中实现了这些特征,使缩放能够缩放降低线宽和更高的功率,并在晶圆尺度集成平台中实现,该平台可以从可见光到近IR运行,并与其他组件集成。这样的进步可能会影响广泛的应用,包括原子和量子传感和计算,计量学,相干纤维通信和传感以及超低噪声MMWAVE和RF生成。然而,在集成的激光器中实现这些目标仍然难以捉摸。在这里,我们报告了一类集成的激光器,可以克服这些限制,并证明了31 MHz瞬时线宽,这是迄今为止我们最好的最低线宽,具有41兆瓦输出功率和73 dB SideMode抑制比例,并且可以通过22.5 nm范围调节。由于在较大的模式体积,非线性光子声子,MHz-scale-fsr,超低损失硅氮化物谐振器腔内发生的Brillouin非线性动力学,因此可以进行这种性能。这种激光设计可以扩展到MHz基本线宽和瓦特类激光器的新工作状态。这样的激光有望解锁对精度量子实验,便携式精度应用以及原子,分子和光学物理学的新灵敏度和保真度。
在光学和微波域之间转换信号的新策略可能在推进古典和量子技术方面起关键作用。传统的光学到微波转导的方法通常会扰动或破坏针对光线强度编码的信息,从而消除了这些signals进一步处理或分布的可能性。在本文中,我们引入了一种光学到微波转换方法,该方法允许对微波光子信号进行检测和光谱分析,而不会降低其信息含量。使用与压电电换能器集成的光力学波导证明了此功能。该系统内有效的机电和光力耦合允许双向光学到微波转换,量子效率高达-54.16 dB。通过在通用布里渊散射中保存光场包膜时,我们通过通过一系列具有独特的共振频率的电动机电sepguments传输光学信号来证明多通道微波光谱过滤器。这种电力力学系统可以为微波光子学中的遥感,通道化和频谱分析提供灵活的策略。
许多疾病与血浆粘度(PV)的变化有关。测量这些是耗时的,通常需要大量的血浆。在这里,我们表明布里鲁因光散射(BLS)光谱法(一种探测高频率纵向声学模式的传播和衰减的技术)可以识别出微级别的粘度的变化 - 一秒钟内的粘度 - 大小的体积。这是COVID -19(COV)患者的血浆,该血浆表现出升高的PV。还表明,使用BLS测量的粘度包含其他独特信息,这些信息可以辨别出可能具有诊断价值的悬浮液,这些悬浮液在患有严重疾病进展的COV患者中似乎更存在。
抽象的布里鲁因光散射(BLS)是一种非破坏性和非接触技术,为探测生物组织的微力特性提供了强大的工具。但是,生物组织的固有异质性在解释BLS光谱时会构成重大挑战。在这项研究中,我们引入了一种新型方法,该方法利用单个BLS频谱中的强度信息,以直接估计纵向模量的VOIGT平均值。此外,我们还使用一种方法来确定基于2D BLS图的全局分析,用于光固有异质样品的平方孔系数的比率。该方法显示出有效地确定人骨组织的软和硬成分的光弹性比,从而能够计算平均弹性模量。此外,它具有出色的能力,可以生成散射体积的填充因子的地图,从而在BLS映射下的粗糙表面的复杂结构和地形上散发出宝贵的光线。
电扭曲的布里渊散射提供了一种无处不在的机制,可以在光学上激发高频(> 10 GHz),散装声音子,这些声子对表面诱导的损失具有可靠性。在高Q微孔子中共同增强了这种光子 - 光子相互作用,已催生跨越微波炉的多种应用到光学结构域。然而,将泵和散射的波和散射的波调节通常带有光子限制或模态重叠的成本,从而导致光学机械耦合有限。在这里,我们引入了Bragg散射,以实现在微米大小的超级模式微波器的相同空间模式下实现强大的光学机械耦合。显示出高达12.5 kHz的单光机电耦合速率,比其他设备显示出10倍以上。低阈值声子激光和光力强耦合。我们的工作建立了一个紧凑而有效的范式,以光学地控制大量的声音声子,为单光器水平的光学机械耦合铺平了道路,并为量子网络的大规模集成提供了强大的发动机,其中量子网络大量传递和存储了量子状态。
其中A P,A S和B AC分别对应于泵场,Stokes场和载波频率ωp,ωs,ωac的信封操作员。∂Opt(γ)和υAC(γ)表示光学和声学的群体速度(耗散速率)。g 0在单个量子水平上量化这三个领域之间的耦合强度。在以下讨论中,我们在不失去普遍性的情况下进行了真实和积极的[3]。ξp,ξs和ξAC代表这三个领域的langevin噪声,遵守以下统计属性
具有超低基础线宽和高输出功率的光子积分激光器对于精确原子和量子应用,高容量通信以及纤维传感非常重要,但晶圆尺度的解决方案仍然难以捉摸。在这里,我们报告了一个基于光子分子耦合谐振器设计的集成刺激性刺激性刺激性激光器(SBL),该设计实现了C频段中具有超过10 mW输出功率的低于100-mHz的型号延伸,在200 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm的范围内(Si 3 n n n 4 4)cmos cmos comcale comcale comcale-comcale comcale compation。Photonic分子设计用于抑制二阶Stokes(S2)发射,从而使初级激光模式随着泵功率增加而没有相位噪声从较高的stokes订单中增加。嵌套的波导谐振器具有1.84亿个固有和9200万个加载Q,比先前的光子分子的数量级改进,可以在S2频率下进行198 MHz的精确谐振分解。我们演示了S2-抑制的单模SBL,最小基本线宽为71±18 MHz,对应于23±6-MHz 2 /hz白频率 - 噪声底层,比先前的集成SBL低一个数量级,并具有11英里 /小时的POUT-POUT POUT-PUT-POUT POUT-POUT POUT和2.3-MW THELENSHOLD PARE。频率噪声从2-kHz到1-MHz偏移到达谐振器内部的热浪费噪声。激光相噪声在10英里处偏移时达到-155 dbc/hz。©2023 Optica Publishing Group这种芯片SBL的性能不仅表现出有望提高可靠性并降低尺寸和成本的希望,而且还可以实现需要高速操纵,控制和质疑原子和Qubits的新精确实验。Realization in the silicon nitride ultra-low loss platform is adaptable to a wide range of wavelengths from the visible to infrared and enables integration with other components for systems- on-chip solutions for a wide range of precision scientific and engineering applications including quantum sensing, gravit- ometers, atom interferometers, precision metrology, optical atomic clocks, and ultra-low noise microwave 一代。
1 KBR,Inc,NASA AMES研究中心,加利福尼亚州莫菲特菲尔德,美国2材料科学部,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国3美国3号物理学系美国伯克利,94720,美国5材料科学与工程系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305,美国6斯坦福大学材料与能源科学研究所,SLAC国家加速器实验室,加利福尼亚州Menlo Park,加利福尼亚州Menlo Park,94025,美国7机械工程和材料科学系,纽约大学,纽约大学,纽约市765111111111。 OX1 3PJ,英国9 Kavli Energy Nanoscience Institute,位于伯克利,伯克利94720,美国
I.引言光学通信的散射是无关的,无论纤维中存在的光功率量如何。它可以分为两个方案:自发和刺激的散射[1,2]。自发的光散射是指在条件下散射的过程,因此,光学材料的特性不受入射电场的存在影响。对于能力强度的输入光界,自发的光散射可能会变得非常强烈;因此,在这种刺激的方向上,散射过程的性质严重修饰了材料系统的光学特性,反之亦然。此外,雷利(Rayleigh),拉曼(Raman)和布里鲁因(Brillouin)散射事件可能引起自发和刺激的散射。瑞利散射来自非传播密度的闪光,可以称为熵闪烁中的散射。拉曼散射来自光与散射介质中组成分子的振动模式的相互作用。等效于此,这可以被视为光子声子中光的散射。brillouin散射来自光与传播密度波或声音子的相互作用。这些散射过程中的每个散射过程始终存在于光学纤维中,因为没有纤维没有微观缺陷或驱动这三个过程的热闪光。被认为是主要的光纤维非线性。因此,本评论文章将强调这一主题。