获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
在应用于板球分析的计算机视觉领域中,分类击球镜头带来了巨大的挑战,要求细微的理解和分类。板球投篮的分类至关重要,因为它使玩家有效地评估,适应和执行他们的游戏计划,从而塑造比赛的结果。本文介绍了板球击球照片图像数据集(CBSID),这是一个新的基准数据集,其中包含2160个精心注释的板球镜头图像,这些板球拍摄了七个不同的类别。这项研究的核心目标是开发一个能够有效分类图像中板球击球的强大系统。为了解决这个问题,我们提出了一种基于视觉变压器的微调模型,专门适用于板球射击分类,称为板球击球射击视觉变压器(Shot-Vit)。我们提出的方法证明了出色的性能,在CBSID上实现了92.58%的验证精度。shot-Vit在板球射击分类精度中明显胜过建立的模型,例如VGG19,resnet50,i-alexnet和fit_b32,展示了视觉变压器在超过现有的深度学习体系结构方面的显着功能。视觉变压器具有通过自我注意的机制来捕获图像中的全球环境和远程依赖性的能力,从而实现了有效的特征提取和表示,传统模型可能难以实现。板球击球的准确分类对板球教练,球员发展和比赛分析具有深远的影响。它有可能改变培训方法,为球员和教练提供对击球技巧和策略的精确见解,从而为这项运动的整体进步做出了贡献。