1 MCA 系 1 尼赫鲁工程学院与研究中心,帕姆巴迪,印度 摘要:目前,芯片设计中跨越了太多的架构界限。没有人找到如何让芯片满足理想消费产品的所有需求的方法。但我认为我们正在接近目标。一种新型芯片现在可以通过擦除现有硬件设计并创建适合运行所需软件的新硬件来适应任何编程要求。可重构处理器是用来描述这些半导体的术语。这些新芯片可以立即重新连接自身,以构建以最高速度执行软件所需的精确硬件。这种新芯片的名称是 CHAMELEON CHIP。索引术语 - 全局概览、通用仿真流程、测试用例生成。
摘要:最近已经认识到,由于研究人员的兴趣,材料和纺织品的增长正在连续发展。颜色变化技术最近在许多产品和材料中反映了,由于市场内颜色变化的需求增加。其中一些要求可能因受益而有所不同,而有些要求则是表达创造力的目的。通过各种方法实现了改变颜色的技术,其中一种是铬材料。这样的材料既是光色素和热色素着色剂。他们是市场上良好的着色剂。光致质着色剂具有在暴露于阳光的情况下改变色彩的能力,而热色素着色剂在暴露于热量时会改变颜色。由于其潜力,这些类型的着色剂已成为研究的主要重点。它们已用于各种应用中,例如医疗热量表,塑料带温度计,食物包装等。在过去的几年中,此类着色剂在纺织品上的应用大大提高了,这将使潜力通过此类产品丰富市场。本文重点介绍了光致变色和热色素的色素,这些色素被应用于织物上,然后在设计中应用它们。设计的灵感来自变色龙,因为铬材料的另一个术语是“变色龙”材料。耐用性和舒适实验在将其应用于执行的设计上之前,在铬织物上进行了执行,目的是区分应应用的区域。
[4] Linda Evans、Fred Hardtke、Emily Corbin 和 Wouter Claes。2020 年。伪装的变色龙:在埃及 el-Hosh 遗址的新发现。《考古学和人类学》12,8 (2020),1–9。[5] 欧洲宠物食品工业联合会 (FEDIAF)。2020 年。事实与数据 2020。https://www.fediaf.org/images/FEDIAF_Facts_and_Figures_2020.pdf [6] Martin S Fischer、Cornelia Krause 和 Karin E Lilje。2010 年。变色龙运动能力的进化,或如何成为树栖爬行动物。《动物学》113,2 (2010),67–74。[7] Olivier Friard 和 Marco Gamba。 2016. BORIS:一款免费、多功能的开源事件记录软件,可用于视频/音频编码和实时观察。《生态学与进化方法》7,11(2016),1325–1330。[8] Klaus Greff、Rupesh K Srivastava、Jan Koutník、Bas R Steunebrink 和 Jürgen Schmidhuber。2016. LSTM:搜索空间漫游。《IEEE 神经网络与学习系统汇刊》28,10(2016),2222–2232。[9] Anthony Herrel、Krystal A Tolley、G John Measey、Jessica M da Silva、Daniel F Potgieter、Elodie Boller、Renaud Boistel 和 Bieke Vanhooydonck。2013. 缓慢但坚韧:变色龙奔跑和抓握能力分析。 《实验生物学杂志》216,6(2013),1025–1030。[10] Timothy E Higham 和 Bruce C Jayne。2004。蜥蜴在斜坡和栖木上的运动:树栖专化者和陆栖通才者的后肢运动学。《实验生物学杂志》207,2(2004),233–248。[11] Mayank Kabra、Alice A Robie、Marta Rivera-Alba、Steven Branson 和 Kristin Branson。2013。JAABA:用于自动注释动物行为的交互式机器学习。《自然方法》10,1(2013),64–67。 [12] Mary P Klinck、Margaret E Gruen、Jérôme RE del Castillo、Martin Guillot、Andrea E Thomson、Mark Heit、B Duncan X Lascelles 和 Eric Troncy。2018 年。通过随机临床试验,开发了供看护人/主人 MI-CAT (C) 使用的蒙特利尔猫关节炎测试工具,并对其初步效度和信度进行了评估。《应用动物行为科学》200 期 (2018),第 96-105 页。[13] JB Losos、BM Walton 和 AF Bennett。1993 年。《肯尼亚变色龙的冲刺能力与粘着能力之间的权衡》。《功能生态学》(1993),第 281-286 页。[14] Tom Menaker、Anna Zamansky、Dirk van der Linden、Dmitry Kaplun、Aleksandr Sinitica、Sabrina Karl 和 Ludwig Huber。 2020 年。面向数据驱动的动物行为模式自动分析方法。第七届动物-计算机交互国际会议论文集。1-6。[15] Nikola Mijailovic、Marijana Gavrilovic、Stefan Rafajlovic、M Ðuric-Jovicic 和 D Popovic。2009 年。从加速度和地面反作用力识别步态阶段:神经网络的应用。Telfor 杂志 1, 1(2009 年),34-36。[16] Hung Nguyen、Sarah J Maclagan、Tu Dinh Nguyen、Thin Nguyen、Paul Flemons、Kylie Andrews、Euan G Ritchie 和 Dinh Phung。2017 年。使用深度卷积神经网络进行动物识别和鉴别,用于自动野生动物监测。2017 年 IEEE 数据科学与高级分析国际会议 (DSAA)。IEEE,40–49。[17] Matthias Ott。2001 年。变色龙有独立的眼球运动,但在扫视猎物追踪过程中双眼会同步。实验脑研究 139,2(2001 年),173–179。[18] Veronica Panadeiro、Alvaro Rodriguez、Jason Henry、Donald Wlodkowic 和 Magnus Andersson。2021 年。28 款免费动物追踪软件应用程序回顾:当前功能和局限性。实验室动物(2021 年),1–9。[19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020. 揭示未知:使用深度学习实时识别加拉帕戈斯蛇类。动物 10, 5 (2020), 806。[20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan Shuman 和 Denise J Cai。2019. ezTrack:用于研究动物行为的开源视频分析流程。科学报告 9, 1 (2019), 1–11。[21] Talmo D Pereira、Diego E Aldarondo、Lindsay Willmore、Mikhail Kislin、Samuel SH Wang、Mala Murthy 和 Joshua W Shaevitz。2019. 使用深度神经网络快速估计动物姿势。自然方法 16, 1 (2019), 117–125。[22] Jane A Peterson。 1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1-42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用智能与信息学会议上。Springer,216-231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016. 您只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779-788。 [25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。一种新型活动监测器在评估猫的身体活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。
摘要:变色龙系统是动态系统,根据参数值表现出自激发或隐藏的振荡。本文对二次变色龙系统进行了全面研究,包括对其对称性,耗散,局部稳定性,HOPF分叉和各种混乱动态的分析,因为控制参数(µ,A,C)各不相同。在这里,µ用作y方向的耗散参数。进行了µ = 0的四个方案的分叉分析,揭示了在不同的参数设置下出现各种动态现象的出现。o ff设置的提升意味着将常数引入系统的一个状态变量之一,以将变量提升到不同的级别。此外,通过不同的µ示出了隐藏的混乱双重性,并具有OFF集的增强性。参数µ既充当HOPF分叉参数和O FF集促进参数,而其他参数(A,C)也作为控制参数起关键作用,从而导致了与自我激发或隐藏混乱吸引者的周期上升的路线。这些发现丰富了我们对二次变色龙系统中非线性动态的理解。
检索授权的语言模型(RALM)将大型语言模型(LLM)与矢量数据库结合在一起,以检索文本生成期间的上下文知识。这种策略即使使用较小的模型也有助于产生令人印象深刻的发电质量,从而通过数量级来调查计算需求。为了有效而灵活地为Ralms提供服务,我们提出了Chameleon,这是一种杂项加速器系统,将LLM和矢量搜索加速器集成在分解的体系结构中。异质性在推理和检索方面有效地提供了有效的服务,而分类允许独立缩放LLM和向量搜索加速器来满足各种RALM要求。我们的变色龙原型在FPGAS上实现了向量搜索加速器,并将LLM推理分配给GPU,并用CPU作为群集坐标。与混合CPU-GPU架构相比,在各种RALMS上进行了评估,延迟降低2.16倍,吞吐量的延迟3.18倍。有希望的结果为采用异质加速器的方式铺平了道路,不仅是LLM推断,而且还可以在未来的RALM系统中进行矢量搜索。
Chameleon 解决方案:C3 Location Systems 的基于位置的解决方案 (LBS) 包括硬件和软件 GPS 组件,这些组件对于我们安全解决方案的质量至关重要。C3 Chameleon© 软件经过精心设计,可创建超高速、可扩展的企业级解决方案。Chameleon© 企业版是一款强大的解决方案,具有高速地图引擎,可提供亚秒级地图刷新、每秒 20,000 个反向地理代码,并可根据需要通过向集群添加廉价 PC 来支持超过 100 万个 GPS 设备,实现无限增长。该软件旨在使用任何可用的 GPS 设备。这种与硬件无关的能力允许最大的灵活性和为手头的任务选择正确硬件供应商的能力。C3 能够使用任何制造商,而大多数 GPS 公司则被锁定在一个供应商上。这是一种独特的功能,可实现最大的灵活性。
使用国家科学基金会支持的变色龙测试床获得了此处介绍的结果。Argonne国家实验室的工作得到了美国能源部高级科学计算机研究办公室的支持,根据合同DE-AC02-06CH11357。这项研究得到了Exascale Computing项目(17-SC-20-SC)的支持,这是美国科学办公室和国家核安全管理局的合作努力。
分类:定义、数据概括、分析特性、属性相关性分析、挖掘类别比较、大型数据库中的统计测量、基于统计的算法、基于距离的算法、基于决策树的算法。聚类:简介、相似性和距离测量、分层和分区算法。分层聚类 - CURE 和 Chameleon。基于密度的方法 - DBSCAN、OPTICS。基于网格的方法 - STING、CLIQUE。基于模型的方法 - 统计方法、关联规则:简介、大项目集、基本算法、并行和分布式算法、神经网络方法。
● AI4SIDS:面向小岛屿发展中国家的人工智能驱动气候适应平台。团队负责人:Letetia Addison,特立尼达和多巴哥(获奖) ● Chameleon AI:人工智能驱动的平台,旨在改变马拉维小农户的灌溉方式。团队负责人:Alinafe Kaliwo,马拉维。● 气候智能灌溉器:智能水-食物-能源食物关系效率灌溉。团队负责人:Edmond Ng'walago,坦桑尼亚。● ACBA Energy 的 EmTrack:用于排放跟踪和碳排放量化的人工智能应用。团队负责人:Nair de Sousa,安哥拉。● RAICE:尼泊尔可持续水稻种植的人工智能驱动精准灌溉。团队负责人:Asbina Baral,尼泊尔。