摘要 — 由于生物医学信号幅度非常低,且具有与环境噪声类似的高共模特性,因此用于这些信号的放大器应具有高 CMRR。交叉耦合放大器对差分和共模信号的负载行为导致高 CMRR,因此会强烈衰减共模信号。由于交叉耦合放大器差分增益较低,因此其负载与电流复用运算放大器相结合。在 0.18 µm CMOS 技术中,模拟并比较了具有传统共模反馈和改进负载的全差分电流复用 OTA 的最终 CMRR。模拟了它们的 CMRR 失配和工艺变化。根据模拟结果,对于相同的功耗 W 和 L,改进的交叉耦合负载电流复用具有最佳性能。在最坏情况下,其 CMRR 约为 90 dB,而总功耗在 1.8 V 电源电压下为 18 µW。带宽为 4.8 kHz,此带宽内的总输入参考噪声为 1.04 µV rms 和 0.43 µV rms(0.5 至 100 Hz),这对于本研究中考虑的 EEG 应用来说是可接受的噪声和带宽。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。
摘要 — 近期已有报道采用共享参考方案并实现高共模抑制比(即 CMRR > 80dB)的多通道生物信号记录系统。虽然众所周知,共享参考方案会导致生物放大器输入端的阻抗不匹配,从而限制可实现的最大 CMRR,但仍然缺乏能够对这种退化源进行定量评估的理论研究。本简报提供了由电极阵列和生物放大器组成的输入接口的等效电路模型,然后进行了完整分析以计算 CMRR 退化。本文介绍了基于先前设计和制造的 180nm CMOS 工艺的 32 通道神经记录前端的模拟结果,结果与理论结果非常吻合。
摘要 - 在本文中,通过在每个阶段选择和优化合适的结构,我们设计了一个多功能低噪声斩波器放大器。具有高CMRR和PSRR的拟议的神经斩波器放大器适用于EEG,LFP和AP信号,而NEF较低。为了最大程度地减少噪声并增加带宽,选择了单阶段的电流重复使用放大器,并选择了抗伪式的共同模式反馈,而在第二阶段实现了一个简单的完全差异放大器,以提供高摆动。具有活性RC积分器的DC伺服回路旨在阻止电极的直流偏移,并使用正反馈回路来增加输入阻抗。最后,使用了区域和功能效率的纹章减少技术和切碎的尖峰过滤器,以具有清晰的信号。设计的电路在市售的0中模拟。18 µm CMOS技术。3。7 µA电流来自±0。6 V供应。总带宽从50 MHz到10 kHz,而该带宽中的总输入引用噪声为2。9 µV RM,中带增益约为40 dB。设计的放大器可以忍受高达60 mV的DC电极偏移量,并且积极反馈回路的放大器输入阻抗为17mΩ,而切碎频率为20 kHz。随着设计的连锁降低,由于在切碎频率下的上调噪声,输入引用的噪声中只有一个可忽略不计的峰。为了证明设计电路的性能,进行了500个蒙特卡洛分析以进行过程和不匹配。CMRR和PSRR的平均值分别为94和80 dB。索引项 - 仪器放大器,高CMRR,交叉耦合OTA,电流reuse ota。
在本文中,我们将回顾 fMRI BOLD 采集的设置。PBS 研究人员主要使用梯度回波 (GE) 回波平面成像 (EPI) 单次激发序列进行 fMRI BOLD 采集。我们也安装了相同的序列,但 CMRR 也对其进行了高度可定制的 WIP。因此,我们拥有通用的西门子版本和相同序列的多功能 CMRR 版本。使用 CMRR BOLD 序列,我们还可以采集多回波 fMRI 数据,这些数据可以用 TEDANA 或 fMRIprep 进行预处理。CMRR 序列还能够采集可用于失真校正的 fMRI 向上闪烁向下闪烁数据,其中 AFNI 具有内置算法来处理此类数据。下面将提到如何选择这些选项的参数。
摘要 — 通过脑机接口 (BMI) 和闭环深部脑刺激器 (DBS) 精确测量脑活动是脑与后续处理模块之间通信的最重要步骤之一。在 DBS 中经常使用的传统胸装系统中,传感接口中会产生大量伪影,通常是施加在外壳和传感电极之间的共模信号。由于接口的共模抑制比 (CMRR) 能力有限,因此衰减这种共模信号在这些系统中可能是一个严峻的挑战。正在开发的新兴 BMI 和 DBS 设备可以安装在头骨上。将系统安装在颅骨区域可以通过限制伪影幅度来抑制这些感应生理信号。在本研究中,我们使用躯干形体积导体中的电流源偶极子模型,通过关注心脏活动来模拟伪影的影响。使用不同的 DBS 架构执行有限元仿真,我们估计了几种设备架构的 ECG 共模伪影。使用该模型有助于定义整个系统 CMRR 的总体要求,以保持大脑活动的分辨率。模拟结果估计,颅骨安装系统的心脏伪影影响将明显低于包括胸部区域的非颅骨系统。预计对于胸部安装的设备,至少需要 60-80 dB CMRR 来抑制 ECG 伪影,而对于颅骨安装的设备,在最坏情况下 20 dB CMRR 就足够了。用于估计心脏伪影的方法可以扩展到其他来源,例如运动/肌肉源。设备对伪影的敏感性对于闭环 DBS 和 BMI 的实际转化具有重要意义,包括生物标志物的选择以及绝缘体和导线系统的设计要求。
基本运算放大器 – 反相和非反相运算放大器 – 差分运算放大器 – CMRR – 运算放大器作为符号和比例变换器移相器积分器的基本用途。微分器和加法器 D/C – 二进制加权方法 – R-2R 梯形法 – A/C 逐次逼近和计数器方法 – OpAmp 作为比较器 学习书籍:
摘要 - 本文介绍了运算跨导放大器 (OTA) 的设计概念。该 OTA 的设计和仿真采用 0.18μm CMOS 工艺。该 OTA 的偏置电压为 1.8,电源电压为 1.8 V。该 OTA 的设计和仿真是使用 CADENCE Spectere 环境和 UMC 0.18μm 技术文件完成的。该 OTA 的仿真结果表明,开环增益约为 71 dB,GBW 为 37 KHz。该 OTA 的 CMRR 为 90 dB,PSRR 为 85 dB。该 OTA 的功耗为 10 mW,斜率为 2.344 V/µsec。关键词 - OTA、Cadence、CMRR、PSRR、功耗、CMOS IC 设计。1. 简介由于 VLSI 技术的最新发展,晶体管的尺寸减小,电源也减小了。 OTA 是大多数具有线性输入输出特性的模拟电路的基本构建块。OTA 广泛应用于神经网络、仪表放大器、ADC 和滤波器电路等模拟电路中。运算跨导放大器 (OTA) 与传统运算放大器基本相似,两者都具有差分输入。OTA 与传统运算放大器之间的基本区别在于,OTA 的输出为电流形式,而传统运算放大器的输出为电压形式。
摘要 – 本文提出了一种用于 EEG 信号记录的 4 通道模拟前端 (AFE) 电路。对于 EEG 记录系统,AFE 可以处理各种传感器输入,具有高输入阻抗、可调增益、低噪声和宽带宽。缓冲器或电流-电压转换器块 (BCV) 可设置为缓冲器或电流-电压转换器电路,位于 AFE 的电极和主放大器级之间,以实现高输入阻抗并与传感器信号类型配合使用。斩波电容耦合仪表放大器 (CCIA) 位于 BCV 之后,作为 AFE 的主放大器级,以降低输入参考噪声并平衡整个 AFE 系统的阻抗。可编程增益放大器 (PGA) 是 AFE 的第三级,允许调整 AFE 的总增益。建议的 AFE 工作频率范围为 0.5 Hz 至 2 kHz,输入阻抗大于 2 T Ω,采用 180nm CMOS 工艺构建和仿真。AFE 具有最低 100 dB CMRR 和 1.8 µVrms 的低输入参考噪声,可实现低噪声效率。该设计采用了 BCV 等新功能来增强输入多样性,与之前的研究相比,IRN 和 CMRR 系数表现出显着增强。可以使用该 AFE 系统获取 EEG 信号,这对于检测癫痫和癫痫发作非常有用。
传感神经刺激器是一种用于长期观察大脑活动的先进技术,在闭环神经调节和植入式脑机接口方面表现出巨大潜力。然而,由于记录条件复杂且共模抑制比 (CMRR) 有限,传感神经刺激器记录的局部场电位 (LFP) 可能会受到心电图 (ECG) 信号的污染。在本研究中,我们提出了一种解决方案,用于从传感神经刺激器记录的局部场电位 (LFP) 中去除此类 ECG 伪影。添加同步单极通道作为 ECG 参考,然后应用两种预先存在的方法,即模板减法和自适应滤波。成功去除了 ECG 伪影,并且该方法的性能对残留刺激伪影不敏感。这种去除 ECG 伪影的方法拓宽了传感神经刺激器的应用范围。