人工智能(AI),更具体地说,深度学习,彻底改变了包括医疗保健在内的许多领域。卷积神经网络(CNNS)是一种尤其是熟悉图像识别任务的一种深度学习模型,在医学诊断方面表现出了巨大的希望,尤其是在皮肤病学方面。皮肤疾病诊断在很大程度上取决于视觉评估,使其成为通过AI自动化的理想候选者。通过利用CNN,可以根据图像对皮肤病进行分类,从而更快,更准确地诊断过程。这项研究重点是开发基于Web的皮肤病检测和分类系统,集成了CNN以使诊断过程自动化。用户,包括患者和医疗专业人员,可以上传或捕获皮肤病变的图像,然后通过在皮肤病学数据集中培训的CNN模型对其进行实时分析。该系统不仅可以识别皮肤状况,而且还提出了潜在的治疗方法,提供了可以指导进一步医疗咨询的初步诊断。这项研究的主要目标是创建一个可访问的,用户友好的平台,该平台可以用作诊断工具和教育资源。通过对皮肤疾病的初步评估自动化,该系统旨在弥合患者和皮肤科医生之间的差距,尤其是在稀缺医疗保健服务的地区。本文概述了系统的开发过程,CNN模型架构和所使用的技术框架,同时还与现有的皮肤病检测方法进行了详细的比较。
(例如,CSC 413/2516)•对神经网和CNN的坚实熟悉•线性代数的固体背景•多元计算和概率•差分方程将有用•编程技能(例如,Tensorflow或Pytorch,如果
摘要 - 脑肿瘤分类在早期诊断和有效治疗计划中起着至关重要的作用。在本文中,我们提出了一种新方法,即基于卷积神经网络的 K 最近邻 (KNN-CNN),用于精确的脑肿瘤分类。所提出的方法结合了 K 最近邻 (KNN) 和卷积神经网络 (CNN) 的优势,同时利用了传统的基于特征的分类和基于深度学习的特征提取。我们使用 CNN 从脑肿瘤图像中学习高级特征,并使用 KNN 根据提取的特征对肿瘤进行分类。在脑肿瘤数据集上的实验结果证明了 KNN-CNN 方法的有效性和效率,实现了高分类准确率并且优于传统方法。关键词:图像挖掘、脑肿瘤、分类、磁共振成像、最近邻;
摘要:卷积神经网络(CNN)已被广泛用于根据脑磁共振(MR)图像预测生物大脑年龄。然而,CNN 主要关注空间局部特征及其聚合,而很少关注远处区域之间的连接信息。为了解决这个问题,我们提出了一种新颖的多跳图注意(MGA)模块,该模块与 CNN 结合时可同时利用图像特征的局部和全局连接。插入卷积层之间后,MGA 首先使用块嵌入和基于嵌入距离的评分将卷积得出的特征图转换为图结构数据。使用马尔可夫链过程对图节点之间的多跳连接进行建模。执行多跳图注意后,MGA 将图重新转换为更新的特征图并将其传输到下一个卷积层。我们将 MGA 模块与 sSE(空间挤压和激励)-ResNet18 相结合,形成最终预测模型(MGA-sSE-ResNet18),并执行各种超参数评估以确定最佳参数组合。使用 2788 张健康受试者的三维 T1 加权 MR 图像,我们通过与四个成熟的通用 CNN 和两个代表性脑年龄预测模型进行比较,验证了 MGA-sSE-ResNet18 的有效性。所提出的模型获得了最佳性能,平均绝对误差为 2.822 岁,皮尔逊相关系数 (PCC) 为 0.968,证明了 MGA 模块在提高脑年龄预测准确性方面的潜力。
人工智能(AI)使用最少人工干预的计算机模拟智能行为。AI的最新进展,尤其是深度学习,在感知操作方面取得了重大进展,使计算机能够更准确地传达和理解复杂的输入。在全球范围内,裂缝会影响各个年龄段和地球所有地区的人们。最普遍的诊断和医疗诉讼的原因之一是急诊室拍摄的X光片的骨折,急诊室的骨折可能在2%至9%之间。由于对多种成像方式的破裂检测需求的增长,劳动力将很快受到很大的压力。由于雇用延迟和接近退休的放射科医生的很大一部分,放射科医生的缺乏使这种需求的增长加剧了。此外,解释诊断图像的过程有时可能具有挑战性和乏味。将骨科无线电诊断与AI整合,为这些问题提供了有希望的解决方案。最近,深度学习技术的应用,即卷积神经网络(CNN),在医学成像中的应用显着上升。在骨科创伤领域中,正在记录CNN,以在骨折的识别和分类中以专家骨科医生和放射科医生的熟练程度运作。CNN可以以超过人类观察的速率分析大量数据。在这篇综述中,我们讨论了深度学习方法在断裂检测和分类中的使用,将AI与各种成像方式的集成以及将AI与无线电诊断相结合的好处和缺点。
卷积层:CNN由几层组成,包括将卷积操作应用于输入图像的层。层使用学习的过滤器(内核)通过将过滤器滑过图像并执行求和和对比度[6],[9],从而从输入图像中提取特征。合并层:合并层通常放置在卷积层中。他们在小区域内汇总数据,以采样从卷积层得出的特征图。常见的合并操作包括最大池和平均池,该操作存储每个池字段中的最大值或平均值。激活函数:对于卷积和汇总过程的输出,使用称为Relu(纠正线性单元)的激活函数将非线性添加到网络中,从而可以研究组件之间的关系。完全连接的层:CNN通常在卷积和合并层后具有一个或多个层。通过在一个层和其他层的神经元中建立每个神经元之间的连接,这些层有助于高级表示和分类。培训:CNN通常是使用监督学习培训的,网络学会在其中映射输入图像为相应的标签或类别。随机梯度下降(SGD)及其变体是优化方法,用于通过反向传播获得训练。它调整网络的参数(权重和偏见),以最大程度地减少损失函数,以测量预测标签和真实标签之间的差异[10]。
最近,在资源受限的移动设备上,轻巧的视觉变形金刚(VITS)具有出色的性能和较低的潜伏期,与轻量级卷积神经网络(CNNS)组成。搜索者发现了轻巧的VIT和轻量级CNN之间的许多结构连接。但是,尚未对块结构,宏和微观设计的显着建筑差异进行检查。在这项研究中,我们从VIT的角度和震撼人心的移动设备前景中重新审视了轻量级CNN的有效性。指定,我们通过集成了轻量级VIT的有效建筑设计,从而增强了标准轻量级CNN(即Mobilenetv3)的移动友好性。这最终带有一个新的纯轻质CNN家族,即重新投资。广泛的实验表明,重新投资优于现有的最先进的轻量级VIT,并在各种视觉任务中表现出有利的延迟。值得注意的是,在ImageNet上,Repvit在iPhone 12上以1.0毫秒的延迟达到了80%的前1次精度,这是我们最佳的首次使用轻量级型号。此外,当Repvit与SAM遇到SAM时,我们的Repvit-SAM比Advanced Mobilesam可以实现近10×的推理。代码和模型可在https://github.com/thu-mig/repvit上找到。
抽象目标。运动解码对于翻译脑部计算机界面(BCIS)的神经活动至关重要,并提供了有关如何在大脑中编码运动态的信息。深神经网络(DNNS)正在成为有前途的神经解码器。尽管如此,目前尚不清楚DNN在不同的电机解码问题和方案中的表现如何,哪个网络可以成为入侵性BCIS的良好候选人。方法。完全连接,卷积和复发性神经网络(FCNN,CNNS,RNNS)设计并应用于从麦克拉(Macaques)后顶叶皮层(PPC)中从V6A区域记录的神经元中解释运动态。考虑了三个运动任务,涉及到达和到达(后者在两个照明条件下)。dnns使用试用课程中的滑动窗口接近3D空间中的九个到达终点。为了评估模拟各种场景的解码器,还分析了性能,同时人为地减少了记录的神经元和试验的数量,并在执行从一项任务到另一个任务的转移学习时。最后,准确的时间课程用于分析V6A电机编码。主要结果。dnns的表现优于经典的幼稚贝叶斯分类器,而CNN在整个电机解码问题上还优于XGBoost和支持向量机分类器。cnns使用较少的神经元和试验时,导致了表现最佳的DNN,并且任务对任务转移学习改善了性能,尤其是在低数据制度中。意义。最后,V6A神经元甚至从动作计划中编码并触及到gr的属性,稍后发生握把属性的编码,更接近移动执行,并且在黑暗中显得较弱。结果表明,CNN是有效的候选者,可以从PPC记录中实现人类侵入性BCI的神经解码器,这也减少了BCI校准时间(转移学习),并且基于CNN的数据驱动分析可以提供有关大脑区域的编码特性和功能性启动的见解。
现代的计算机视觉深度学习模型理解和使用(例如B.卷积神经网络(CNN),Resnet,Yolo和Mask R-CNN,用于对象识别,分割或分类等任务)。
Google Scholar 上使用搜索词“CNN”、“物体检测分类”和“底栖”或“珊瑚”或“浮游生物”或“鱼类”的出版物数量,这表明在主要海洋生态学领域中使用 CNN 执行此类任务的热情高涨。