摘要:MRIS的脑肿瘤分割一直是放射科医生的一项艰巨任务,因此,需要自动和广义的系统来解决此任务。在医学成像中使用的所有其他深度学习技术中,基于U-NET的变体是文献中最常用的模型,可针对不同的方式分割医学图像。因此,本文的目的是研究U-NET体系结构中的众多进步和创新,以及最近的趋势,目的是强调使用U-NET的持续潜力用于改善脑肿瘤分割的性能。此外,我们还提供了不同U-NET体系结构的定量比较,以从优化的角度突出该网络的性能和演变。除此之外,我们还尝试了四个U-NET体系结构(3D U-NET,COATION U-NET,R2 COATION U-NET和修改3D U-NET),用于Brats 2020数据集,以供脑肿瘤细分,以更好地概述该体系结构在DICE SCORE和HAUSDORFF距离上的概述。最后,我们分析了医学图像分析的局限性和挑战,以提供有关在优化方面开发新体系结构的重要性的批判性讨论。
1物理系,卡拉布里亚大学,通过P. Bucci,87036 Arcavacata di Rende(CS),意大利2,材料高级光谱实验室,Star Ir,通过Tito Flavio,Calabria,Calabria,Calabria,University of Calabria,87036,87036,87036,Rende(CS),Rende 3 30,nanos Surfacity of Nanos of Surfacity of Nans of Surfacity and coations and coation 30俄罗斯汤姆斯克4力量物理与材料科学研究所,俄罗斯科学学院,634055俄罗斯汤姆斯克,俄罗斯5巴库州立大学,阿塞拜疆阿塞拜疆巴库6同步型S.C.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.A. Fosso del Cavaliere,00133,意大利罗马8号dePolímerosy y材料高级材料:Física,QuímicayTechnología,ciencias deCienciasquíemas,PaísVascovasco vasco upv / ehu上大学西班牙巴斯克国家塞巴斯蒂安(Sebastián
脑血管分析对于开发神经退行性疾病的新型治疗靶标至关重要。这样的准确分析不能手动执行,而需要半自动或完全自动化的方法。深度学习方法最近已证明对医学图像的自动分割和分析必不可少。但是,优化深度学习网络体系结构是另一个挑战。手动选择深度学习网络体系结构并调整其超参数需要大量的专业知识和精力。为了解决这个问题,文献中提出了探索具有高分从细分性能的更高效网络体系结构的神经体系结构搜索(NAS)方法。这项研究介绍了基于差异进化的NAS方法,其中提出了新的搜索空间以用于脑血管分割。我们选择了经常用于医学图像分割的两个架构,即u-net和注意U-net,作为NAS优化的基准。传统的差异进化和基于反对的差异进化与新型搜索空间一起用作NAS中的搜索方法。此外,我们进行消融研究并评估特定损失函数,模型修剪,阈值选择和概括性能对所提出模型的影响。实验是在提供335个单渠道8位灰度图像的两个数据集上进行的。这些数据集是公共体积脑血管系统数据集(CONSEINN)和我们自己的名为Kuvesg的数据集。所提出的NAS方法,即UNAS-NET和COATION UNAS-NET体系结构,就不同的分割指标而言产生了更好的分割性能。更具体地说,具有差分进化的UNAS-NET揭示了高骰子得分/敏感性值分别为79.57/81.48。此外,它们的推理时间比基线方法短9.15。