抽象增强器协调驱动多细胞发展和谱系承诺的基因表达程序。因此,人们认为增强子的遗传变异通过改变细胞命运承诺会导致发育疾病。然而,尽管已经确定了许多含有变异的增强子,但缺乏内生测试这些增强剂对谱系承诺的影响的研究。我们执行一个单细胞CRISPRI筛选,以评估与先天性心脏缺陷(CHD)有关的25种增强子和推定心脏靶基因的内源性作用。我们确定了16个增强剂,其抑制导致人类心肌细胞(CMS)的分化不足。专注的CRISPRI验证屏幕表明,TBX5增强剂的抑制延迟了从中期到后期CM状态的转录开关。两个TBX5增强剂表观遗传扰动的内源性遗传缺失。共同确定了心脏发育的关键增强子,并表明这些增强剂的不正调可能导致人类患者的心脏缺陷。
摘要增强子协调基因表达程序,驱动多细胞发育和谱系承诺。因此,增强子的遗传变异被认为通过改变细胞命运承诺而导致发育疾病。然而,虽然已经鉴定出许多含有变异的增强子,但内源性测试这些增强子对谱系承诺的影响的研究却很少。我们进行了单细胞 CRISPRi 筛选,以评估与先天性心脏缺陷 (CHD) 遗传研究有关的 25 种增强子和假定的心脏靶基因的内源性作用。我们鉴定出 16 种增强子,它们的抑制会导致人类心肌细胞 (CM) 分化缺陷。重点 CRISPRi 验证筛选显示,抑制 TBX5 增强子会延迟从中期到晚期 CM 状态的转录转换。两个 TBX5 增强子的内源性遗传缺失表型复制表观遗传扰动。总之,这些结果确定了心脏发育的关键增强子,并表明这些增强子的错误调节可能导致人类患者出现心脏缺陷。
功能序列的缺失被预测代表了分子进化1,2的基本机制。对第2,3的灵长类动物的比较遗传研究已经确定了数千个人类特异性缺失(HDELS),并且已经使用报告基督分析4。然而,结构变异尺寸(≥50个碱基对)HDEL如何影响其天然基因组环境中的分子和细胞过程。在这里,我们设计了靶向7.2兆布序列序列的基因组尺度库,在6,358个HDELS中的序列,并呈现系统的CRIS PRPR干扰(CRISPRI)筛选方法,以识别HDELS,以识别Chimpanzee Pluripotent Pluripotent干细胞中细胞增殖的HDEL。通过将HDEL与染色质状态特征相交,并执行单细胞CRISPRI(werturb -seq)识别其顺式和反式调节靶基因,我们发现了19个控制基因表达的HDELS。我们重点介绍了两个HDEL_2247和HDEL_585,分别在肝脏和大脑中具有组织特异性活性。我们的发现揭示了在人类谱系中丢失的序列的分子和细胞作用,并为在功能上询问人类特异性遗传变异的框架建立了一个框架。
抗生素耐药性 (AMR) 菌株的突然出现已被认为是影响人类和食品加工行业的最大公共卫生威胁之一。AMR 出现的原因之一是微生物能够形成生物膜,作为一种防御策略,限制抗菌剂渗透到细菌细胞中。大约 80% 的人类疾病是由生物膜相关的固着微生物引起的。细菌生物膜的形成涉及一系列基因,这些基因通过群体感应 (QS) 机制和信号通路进行调控,这些基因控制着细胞外聚合物基质 (EPS) 的产生,而细胞外聚合物基质是生物膜三维结构的基础。各种细菌常用的另一种防御策略包括成簇的规律间隔的短回文重复序列干扰 (CRISPRi) 系统,该系统可防止细菌细胞受到病毒入侵。由于多基因信号通路和控制系统参与生物膜形成的每一步,CRISPRi 系统可作为一种有效的策略来靶向参与生物膜形成的基因组系统。总体而言,该技术能够将基因位点特异性整合到宿主中,从而开发出干扰致病细菌菌株的准转基因控制策略。CRISPR-RNA 引导的 Cas9 核酸内切酶是一种有前途的基因组编辑工具,可以有效地编程以通过靶向参与生物膜形成和毒力的 AMR 编码质粒基因来重新使细菌敏感,从而恢复细菌对抗生素的耐药性。研究人员认为,CRISPRi 促进的编码与生物膜生产相关的调节蛋白的基因沉默是一种可靠的方法,可以通过灭活生物膜形成基因或将与抗生素耐药性或荧光标记相对应的基因整合到宿主基因组中来编辑各种生物膜形成细菌中的基因网络,以便更好地分析其
CRISPR (clustered regularly interspaced short palindromic repeats) is a natural bacterial defense system against bacteriophage infection that has recently been harnessed for genome and tran- scriptome editing in a wide range of organisms based on the generation of double-strand DNA breaks (DSBs) and RNA cleavage (3, 24, 32, 47, 52, 58, 73, 76, 79, 91,127)。是根据工程II(CAS9)和VI型(CAS13)可编程核酸酶,DNA和RNA基础编辑,质量编辑以及CRISPR干扰/激活(CRISPRI/A)编辑(CRISPRI/A)编辑(CRISPRI/A)编辑,启用与基本疾病的校正和安装基本疾病的校正和安装,40个基本疾病的突变(30; 69–71、87、105、115、135),例如转录扰动(138)和表观遗传调节(94)。这些基于DNA的编辑器是通过没有DSB活性的死亡CAS9(DCAS9)或CAS9 Nickase(CAS9N)的融合而生成的,只有对胞嘧啶脱氨酶的活性(例如,APOBEC和C-TO-T编辑的APOBEC和辅助)或trans-FER RNA(TRNA)腺苷(TRNA)腺苷氨基氨基酶(例如,tada)(例如,tada)(37)(37)(37)(37)。RNA编辑系统是通过将DCAS13B/DCAS13D/DCAS13X融合而成的,没有RNA裂解活性与腺苷脱氨酶结构域(例如,ADAR2 DD用于A-TO-I编辑)或工程型胞质Deam-Inase Inase Insaine(例如,ADAR2DD)的87,C-TON 7,c-us-n.7,c.-ty 7,c c. 47,c. 47,c.-ty 7,c-ty 7,c-ty 7,c-us-c.-edy in 13,c-u-u--u-u-udy in 13,c-u-udy in 34,c-u-u--为了启用序列特异性基因组调节,DCAS蛋白还融合到多个基因调节效应子,例如逆转录酶(10),转录阻遏物和激活剂(40,101)和表观遗传性调节器(17,99)。
功能序列的缺失被认为是分子进化的基本机制 1,2 。灵长类动物的比较遗传学研究 2,3 已经发现了数千个人类特异性缺失 (hDels),并且已经使用报告基因检测 4 评估了短 (≤31 个碱基对) hDels 的顺式调控潜力。然而,结构变体大小 (≥50 个碱基对) 的 hDels 如何影响其原生基因组环境中的分子和细胞过程仍未得到探索。在这里,我们设计了针对 6,358 个 hDels 中 7.2 兆碱基序列的单向导 RNA 基因组规模文库,并提出了一种系统的 CRISPR 干扰 (CRISPRi) 筛选方法来识别改变黑猩猩多能干细胞细胞增殖的 hDels。通过将 hDels 与染色质状态特征进行交叉并执行单细胞 CRISPRi(Perturb-seq)来识别它们的顺式和反式调控靶基因,我们发现了 20 个控制基因表达的 hDels。我们重点介绍了两个 hDels,hDel_2247 和 hDel_585,它们在脑中具有组织特异性活性。我们的研究结果揭示了人类谱系中丢失的序列的分子和细胞作用,并建立了一个功能性地询问人类特异性遗传变异的框架。
遗传物质的表达控制大脑发育,分化和功能,以及对基因表达的有针对性操纵以了解基因功能对健康和疾病状态的贡献。尽管CRISPR/DCAS9干扰(CRISPRI)技术的最新改进已使在选定的基因组站点的有针对性的转录抑制作用,但将这些技术集成到非分散神经元系统中仍然具有挑战性。以前,我们优化了双性能病毒表达系统,以表达有丝分裂后神经元中的基于CRISPR的激活机制。在这里,我们使用了类似的策略来适应改进的DCAS9-KRAB-MECP2抑制系统,以用于神经元中的鲁棒转录抑制。我们发现,由神经元选择性的人突触素启动子启用的dcas9-krab-MeCP2构建体启用了初级大鼠神经元中的转基因表达。接下来,我们使用靶向多种基因启动子的CRISPR SGRNA证明了转录抑制作用,并与现有的RNA干扰方法相比,在复杂的脑源性神经营养因子(BDNF)基因上,该系统在神经元中表现出了优越性。我们的发现前期提高了这项改进的CRISPRI技术,以在神经元系统中使用,从而有可能提高了在神经系统中操纵基因表达状态的能力。
摘要:微藻可以分别利用大气中的二氧化碳和阳光作为碳源和能量来源,产生工业相关的代谢物。开发用于高通量基因组工程的分子工具可以加速产生具有改良性状的定制菌株。为此,我们开发了一种基于 Cas12a 核糖核蛋白 (RNP) 和同源定向修复 (HDR) 的基因组编辑策略,以产生微藻 Nannochloropsis oceanica 的无疤痕和无标记突变体。我们还开发了一种基于附加质粒的 Cas12a 系统,用于在目标位点有效地引入插入/缺失。此外,我们利用 Cas12a 处理相关 CRISPR 阵列的能力来执行多路复用基因组工程。我们在一次转化中有效地靶向宿主基因组中的三个位点,从而朝着微藻的高通量基因组工程迈出了重要一步。此外,还开发了一种基于 Cas9 和 Cas12a 的 CRISPR 干扰 (CRISPRi) 工具,用于有效下调目标基因。我们观察到在 N. oceanica 中用 dCas9 执行 CRISPRi 后,转录水平降低了 85%。总体而言,这些发展大大加速了 N. oceanica 的基因组工程工作,并可能为改良其他微藻菌株提供通用工具箱。关键词:Nannochloropsis、微藻、基因组编辑、CRISPR-Cas、基因沉默、核糖核蛋白、Cas9、Cas12a ■ 介绍
神经退行性,神经发育和神经精神疾病是最大的公共卫生挑战之一,因为许多人缺乏调整疾病的治疗方法。缺乏有效疗法的主要原因是我们对病因和细胞机制的有限理解。全基因组关联研究正在提供越来越多的疾病相关遗传变异的目录。下一个挑战是阐明这些变体如何引起疾病,并将这种理解转化为疗法。本综述描述了最近开发的基于CRISPR的功能基因组学方法如何发现神经系统疾病中的疾病机制和治疗靶标。使用CRISPR干扰(CRISPRI)和CRISPR激活(CRISPRA),可在实验疾病模型中使用细菌CRISPR系统来编辑基因组并控制基因的表达水平。这些遗传扰动可以在大规模平行的遗传筛选中实施,以评估人类细胞的功能后果。CRISPR筛选与诱导的多能干细胞(IPSC)技术相结合,该技术能够推导分化的细胞类型,例如神经元和神经胶质,以及来自从患者获得的细胞的脑器官。基于疾病相关的基因表达变化的基于CRISPRI/CRISPRA的建模可以确定因果变化。遗传修饰者筛查可以阐明疾病机制,细胞类型选择性脆弱性的因果决定因素,并确定治疗靶标。
摘要 人类疟原虫恶性疟原虫利用 PfEMP1 编码 var 基因家族的互斥表达来逃避宿主免疫系统。尽管在分子层面上对默认沉默机制的理解取得了进展,但独特表达的 var 成员的激活机制仍然难以捉摸。富含 GC 的非编码 RNA (ncRNA) 基因家族与表达 var 基因的疟原虫物种共同进化。在这里,我们表明这个 ncRNA 家族以克隆变异的方式转录,当 ncRNA 位于活性 var 基因相邻和上游时,单个成员的主要转录发生。我们开发了一种特定的 CRISPR 干扰 (CRISPRi) 策略,可以抑制所有富含 GC 的成员的转录。缺乏富含 GC 的 ncRNA 转录导致环状期寄生虫中整个 var 基因家族的下调。令人惊讶的是,在成熟的血液阶段寄生虫中,富含 GC 的 ncRNA CRISPRi 影响了其他克隆变异基因家族的转录模式,包括所有 Pfmc-2TM 成员的下调。我们为富含 GC 的 ncRNA 转录在 var 基因激活中的关键作用提供了证据,并发现了与寄生虫毒力有关的各种克隆变异多基因家族的转录控制之间的分子联系。这项工作为阐明控制恶性疟原虫免疫逃避和发病机制的分子过程开辟了新途径。