这项工作确立了用茴香提取物制造的铜纳米果(Cunps)的细胞毒性,抗氧化剂和抗癌作用,尤其是在非小细胞肺癌(NSCLC)上。cunps以两种NSCLC细胞系A549和H1650以剂量依赖性方式引起细胞毒性。在100μg/mL时,CUNPS在A549细胞中降低到70%,H1650细胞中的65%。显示出细胞毒性作用(p <0。05)。乳酸脱氢酶(LDH)相应地在细胞中以很高的比例存在,在测试时证明。及其细胞毒性特性,Cunps表现出较高的抗氧化活性。当纳米颗粒的浓度高(100μg/ml)时,浓缩氧(ROS)的比率降低了多达50%,这反过来又表明抗氧化活性。有很多证据表明Cunps具有抗癌潜力。分子对PI3K/AKT/MTOR途径的影响已经表明,这是对癌症存活至关重要的途径之一。Western印迹分析和QRT-PCR结果表明,在CUNP暴露时,该途径中蛋白质会广泛降解。有趣的是,以100μg/ml的磷酸化下降了高达75%的PI3K,AKT和MTOR(P <0。001)。总之,这些发现说明了CUNPS治疗作用背后的机制,从而使它们成为NSCLC治疗的良好靶标。Cunps具有细胞毒性和抗氧化能力,以及肺癌途径的重大改变,因此可以将其视为抗癌候选者。
纳米技术是一个引人入胜的研究领域,这是由于生产具有不同形状,大小,化学成分,分散性的纳米颗粒及其对人类的多种应用。操纵,创建和使用金属纳米颗粒非常重要。因此,获得了独特的热,电子和光学特性。由于较低的时间成本和能量,与物理和化学过程相比,纳米颗粒的生物合成方法优先考虑。纳米颗粒的绿色合成是一种使用天然溶剂的环保技术。当前的工作包括使用Cu(NO3)2的Cunps的环保和绿色合成。H 2 O溶液和石榴提取物的剥离。石榴果皮提取物中存在各种生物汤匙,作为该合成的还原剂。在紫外可见光谱中在350 nm处达到的表面等离子共振(SPR)峰确认了形成的CUNPS。基于SEM分析,获得了球形均匀和形态大小的颗粒(36.99-55.17 nm)。FTIR光谱清楚地说明了由石榴果皮提取物介导的铜纳米颗粒的绿色合成。使用XRD与CUNPS(111、200、220和400)面对面的立方相(FCC)相的反射进行XRD进行了结构表征。发现生物合成的铜纳米颗粒有效地控制了人类病原体的进展,即沙门氏菌。
摘要背景:本研究的目的是研究基于纳米纤维的铜的潜力,以加速伤口愈合过程并防止烧伤伤口感染。方法:用1 cm 2加热的铜板在左侧燃烧六到八周的雌性BALB/c小鼠,然后分为四个治疗组,分别用C8(基于纳米插入的Cunps),冷奶油(补充材料)作为对照药物,银硫二氮卓和无处理。皮肤组织样品在第0、3、8、15和24天从小鼠中取。一块固定在10%的中性缓冲福尔马林进行病理检查中,而其他片则存储在-80C中,直到用于促炎和生长因子基因表达。结果:用10 mg/ml C8处理的组的愈合过程明显更快,并且该组中小鼠的存活率显着高于其他组。促炎基因在C8处理的小鼠中表达并下调。组织病理学证实了与其他对照组相比,用10 mg/ml C8处理的组的治愈率更高。结论:C8对烧伤伤口的愈合具有有益的影响,应进一步研究该化合物的有效剂量。本研究表明,基于纳米氯酸盐的铜颗粒在小鼠皮肤上的抗炎特性。这项研究开辟了皮肤病学和燃烧疗法的新可能性,并突出了基于铜制的烧伤损伤的潜力。Avicenna J Med Biotech 2025; 17(1):2-13。简介关键字:抗炎剂,燃烧,铜,皮肤病学,伤口愈合以引用本文:Rezvan H,Zolhavarieh SM,Nourian A,Bayat E,Bayat E,Kalanaky S,Fakharzadeh S等。基于纳米化的铜纳米颗粒对小鼠模型中燃烧伤口愈合的治疗作用。
摘要:细菌感染引起的疾病,尤其是耐药细菌引起的疾病威胁着全世界的人类健康。已经预测,早期诊断和治疗将有效降低由细菌感染引起的死亡率。因此,迫切需要开发有效的方法来早日检测细菌感染并尽快治疗它们。一些细菌可用于治疗细菌感染,例如大肠杆菌(大肠杆菌),金黄色葡萄球菌,铜绿假单胞菌,沙门氏菌spp,klebsiella spp,klebsiella肺炎幽门螺杆菌。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。 纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。 纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。 关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。使用纳米颗粒的纳米技术驱动的方法可以选择性地靶向并破坏细胞内的致病细菌,克服常规药物递送挑战。纳米颗粒由于其独特的特性(例如高表面积与体积比率)以及用于靶向递送的功能化的能力而越来越有效地治疗细菌感染。纳米颗粒,例如聚合物胶束,纳米注合体和金属纳米颗粒,可增强药物的生物利用度,稳定性和靶向,从而提高治疗有效性并最大程度地减少副作用。关键词:细菌感染,药物输送,纳米颗粒,抗生素剂,药物靶向。Even nanoparticles like Silver Nanoparticles (AgNPs), Gold Nanoparticles (AuNPs), Zinc Oxide Nanoparticles (ZnO NPs), Copper Nanoparticles (CuNPs), Iron Oxide Nanoparticles (Fe3O4 NPs), Chitosan Nanoparticles, Titanium Dioxide Nanoparticles (TiO2 NPs), Graphene Oxide纳米颗粒,二氧化硅纳米颗粒,聚合物纳米颗粒也对细菌感染的治疗也非常有用,因为它们可以封装抗生素或抗菌剂,以提供持续释放并靶向细菌感染(Xu等,2019)。