相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
为了收获太阳光谱的更广泛的部分,是利用可见光激活的关键要求,Tio 2(或类似的半导体材料)结构 - 培训工程已经采用了各种策略,包括通过合并金属(Fe,Cu,Cu等)来修改。或非金属(N,S,C,P等)进入晶体网络或使用其他半导体开发复合材料(Bivo 4,G-C 3 N 4,SNS 2,CuO等)协同利用单个组件提供的优点。除了调整频带间隙以增加太阳照射的收获,抑制E- / H +重组和微调表面特性(例如< / div>主动区域和缺陷含量)也很高。也可以通过用贵金属(AG,PD,PT,AU等)装饰各种策略来抑制E- / H +重组和有效的电荷分离。< / div>或与(i)导电聚合物产生核心壳结构的复合材料,(II)类似石墨烯的材料(((还原)石墨烯 - 氧化物),碳纳米管或量子点,后两者也有助于增加特定表面积。
在高t c酸酯中发现的异常奇怪的金属相并不遵循费米液体中所述的常规凝结原理,并给理论带来了巨大的挑战。电子自我能量的高度精确的实验确定可以为奇怪金属的理论模型提供测试床,而角度分辨的光发射可以作为频率,动量,温度和掺杂的函数。在这里我们表明,在(pb,bi)2 sr 2-x la x cuo 6+δ的(pb,bi)中的恒定光谱函数中,恒定的能量具有非洛伦兹线形状,与依赖k的自我一致。这为有抱负的理论提供了新的测试。在这里,我们表明,通过具有k依赖性的缩放指数的功率定律可以很好地捕获实验数据,并通过掺杂顺畅地演变出来,这种描述自然而然地从反DE保姆/基于综合的基于理论的半学性范围内出现。这将全息方法引起了人们的关注,用于定量建模强烈相互作用的量子材料(例如铜质奇怪的金属)。
量子系统的超快光控制是物理的新兴领域。尤其是光驱动超导性的可能性引起了很多关注。为了识别非平衡超导性,测量超导导性超导性的指纹是必不可少的。最近,非线性THZ第三谐波生成(THG)被证明可以直接探测超导冷凝物的集体自由度,包括HIGGS模式。在这里,我们将这个想法扩展到超导LA 2-X SR X CUO 4的光驱动的非平衡状态,建立了光泵– THz-THG驱动方案,以访问瞬态超导订单参数淬灭并在几乎没有Picosecond Timescales上恢复。我们特别显示了二维th光谱法将光学激发准粒子与纯阶参数动力学的效果相关的能力,这些动力学在泵驱动的线性THZ响应中不可避免地混合。对现有实验的差距动力学进行基准测试表明,驱动的THG光谱在普通泵探针方案中克服这些局限性的能力。
摘要:系统研究了 Ru 沉积温度和后退火条件对用于先进 Cu 互连线应用的原子层沉积 (ALD) Ru 扩散阻挡层与 Cu 薄膜界面粘附能的影响。在 225、270 和 310 o C 沉积温度下沉积的样品的初始界面粘附能分别为 8.55、9.37、8.96 J/m 2 ,这与 ALD Ru 沉积温度下 Ru 薄膜的相似微结构和电阻率密切相关。在 200 o C 后退火期间,界面粘附能一直稳定在 7.59 J/m 2 以上的高值,直至 250 h,而在 500 h 后急剧下降到 1.40 J/m 2 。 X射线光电子能谱Cu 2p峰分离分析表明,界面粘附能与界面CuO形成之间存在良好的相关性。因此,ALD Ru似乎是一种有前途的扩散阻挡层候选材料,具有先进的Cu互连的可靠界面可靠性。
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
将纳米颗粒添加到涂料中是一种广泛采用的策略,可增强树脂性能而不会损害性能。铜氧化物被用作制剂中的添加剂,以取代有机金属,这是由于其杀菌性和防污活性而被禁止的。这项研究的重点是通过在抗小bial涂层中施用的铜(II)氧化物纳米颗粒的合成。合成过程涉及使用硫酸铜(CUSO 4 .5H 2 O)作为前体和NaOH作为碱性剂的共沉淀。的表征。这些分析证实了平均长度约为73 nm和宽度16 nm的CuO纳米棒的形成。对大肠杆菌,金黄色葡萄球菌,铜绿假单胞菌和蜡状芽孢杆菌进行了抗菌测试。结果表明,值得注意的抗菌活性,特别是对金黄色葡萄球菌和蜡状芽孢杆菌的抗菌活性。因此,研究结果表明铜(II)氧化物纳米颗粒具有作为添加剂的潜力,增强了树脂作为涂层和其他应用的杀菌性能。
低维系统和近量子相变中的量子涨落对材料特性有显著的影响。然而,很难通过实验衡量量子涨落的强度和重要性。这里,我们提供了 Mott 绝缘铜酸盐中磁振子激发的共振非弹性 X 射线散射研究。从 SrCuO 2 薄膜中,推导出单磁振子和双磁振子色散。使用由 Hubbard 模型生成的有效海森堡哈密顿量,我们表明,只有在包含源自磁振子-磁振子相互作用的显著量子校正时,才能令人满意地描述单磁振子色散。对 La 2 CuO 4 的比较结果表明,SrCuO 2 中的量子涨落要强得多,表明更接近磁量子临界点。蒙特卡罗计算表明,其他磁序可能与反铁磁尼尔序竞争基态。我们的结果表明,由于强烈的量子涨落,SrCuO 2 是探索新磁基态的独特起点。
自旋梯子最近引起了很多关注,特别是由于超导性在SR 14 x Ca x Cu 24 O 41(SCCO)的压力下观察到的超导性,x 11:5 [1]。scco包含2 -legs¼12 cu 2 o 3梯子,显示一个较大的自旋差距D梯子E 400 K [2]和S¼12 CuO 2链,均沿C轴延伸。它是“自兴”,每个配方单元6个孔。对于x¼0,几乎所有孔都位于链中,并显示准2d顺序[3,4]。在此电荷中,有差距D二聚体E 130 K的有序状态旋转二聚体通过局部孔之间形成了下一个最邻居的CU旋转[3,4]。SCCO的电导率随X:主要的视点是,由于CA兴奋剂引起的化学压力导致从链到梯子的大量孔转移[5],即金属电导率和超电导率均构成了梯子。但是,最近的X射线吸收数据仅表示边缘
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。