tangguh巨大气场的世界一流山地岩及其对潜在的CO 2限制的重要性,西帕布亚,印度尼西亚艾尔伯托·阿尔伯托·阿尔伯图斯·普雷迪普塔,阿里菲尔·毛拉纳,tjahjadi tjahjadi bp,印度尼西亚印度尼西亚东部印度尼西亚的汤瓜领域是一个巨大的气体,比起了巨大的气体燃气。气体积累分布在发现的七(7)个领域,即Vorwata,Wiriagar Deep,Roabiba,Ofaweri,Kepe-Kepe,Wos,Wos和Ubadari领域。随着全球对脱碳化的追求,BP在Tangguh中开发了一种碳捕获,利用和储存(CCUS)策略,以减轻二氧化碳(CO 2)排放的释放并支持增量气体的产生。Tangguh产生的气体最多包含14%的CO 2。CCUS倡议涉及使用Tangguh增强气体回收计划(EGR)程序将生产的CO 2注入储层中。
摘要:地下储氢已被公认为储存大量氢气的关键技术,有助于氢经济的工业规模应用。然而,人们对地下储氢的了解甚少,导致项目风险很高。因此,本研究考察了盖层可用性和氢气注入率对氢气回收率和氢气泄漏率的影响,以解决与地下储氢有关的一些基本问题。建立了三维非均质储层模型,并利用该模型分析了盖层和氢气注入率对氢气地下储存效率的影响。结果表明,盖层和注入率对氢气泄漏以及捕获和回收的氢气量都有重要影响。结论是,当没有盖层时,较高的注入率会增加氢气泄漏。此外,较低的注入率和盖层可用性会增加回收的氢气量。因此,这项工作为地下储氢项目评估提供了基本信息,并支持能源供应链的脱碳。
沿密西西比河。它将捕获在制造过程中生成的二氧化碳(CO 2),以安全,永久将其存储在毛里帕斯湖底下的一英里以上,该区域是在Caprock层之间的多孔岩石区域,充当密封。
地质碳捕获和存储(CCS)是减轻温室气体排放的关键技术,但泄漏的风险仍然是一个重大问题。跨密封间隔的故障和断裂网络是CO 2逃脱存储库的潜在途径,因此需要准确评估其渗透率和连通性。我们的研究提出了一种对断层区域地质泄漏进行建模的综合方法,将单断层应力 - 透明度实验室测量与详细的断裂露头数据相结合,以模拟碳存储的原位条件。我们研究了由konusdalen West区域(挪威Svalbard)的正常断层切割的Caprock序列,这是Longyearbyen Co 2实验室储层的区域密封,以及与Barents和North Sean Seas Caprock地层的类似物。数字化露头裂缝网络,我们探索了断裂尺寸分布的变化及其在断层区不同部分中的连接性。这些参数是基本的,以确定断裂网络是否提供了可渗透途径。将露头分析与实验室测量相结合,使我们能够创建自然断裂网络的耦合水力力学模型,并评估其高尺度的渗透性。我们发现,断裂网络几何形状在整个断层区域各不相同,从而导致不同的高尺度渗透率模型,从而突出了将详细的断裂网络信息纳入渗透性模拟中的重要性。我们的研究提供了一个框架,将断裂通透性测量和露头分析纳入故障区域的地质泄漏建模,这可以为CCS项目的设计和操作提供信息,并有助于减轻与CO 2的地质存储相关的风险。
对监测CO2注入的积极和被动的地震:最佳实践和最近的进步Rob Kendall Don Lawton碳捕获和储存量在过去几年中急剧增长,并且预计在不久的将来预计达到指数增长以实现气候目标。确保长期遏制羽流对于这些项目的成功至关重要。在这些末端,已利用各种监测方法来监测注入储层和羽流。其中包括3D和4D地震和诱导的地震性监测等。主动3D和4D地震将需要了解基线储层条件并监视Caprock完整性和CO2羽流迁移。将需要被动地震以建立背景地震性并监测二氧化碳注入期间诱导的地震性。在本届会议上,我们邀请了有关本地和国际摘要的最佳实践,案例研究和最新进步,这些谈判是对CCS注入预测进行创新,优化或以其他方式进行的。
前身为内陆海洋,现称为加利福尼亚中央谷 −浅绿色区域显示包含用于 CCS 的盐水的页岩地质储存 −大约 7,000 英尺深度的页岩盖层和二氧化碳储存地层下方的基底层 目前加利福尼亚州没有可操作的 CCS 项目 −加利福尼亚州正在积极开发的 CCS 项目很少 Aemetis 计划每年在加利福尼亚州的两个生物燃料工厂封存 200 万公吨二氧化碳: - 预计每年从 Aemetis 沼气和生物燃料工厂产生 400,000 公吨二氧化碳 - 预计每年使用其他可再生燃料工厂和炼油厂提供的二氧化碳产生 160 万公吨二氧化碳 计划每年封存 200 万公吨二氧化碳,可产生高达 5 亿美元的年收入(假设平均 LCFS 为 200 美元,IRS 45Q 为 50 美元)
在英国,我们拥有丰富的可再生能源资源的理想组合,用于绿色氢的生产,广泛的海上气体生产,以支持蓝色氢的生产,以及以耗尽的气田和盐洞穴形式的出色氢存储资产,这些储备金和盐洞穴的形式也可以支持所需的CO 2用于蓝色氢的储存。这一切都得到了数十年的天然气存储和生产操作经验的支持。Hystorpor项目正在研究多孔介质用于氢存储的可行性,因为这些可以提供TWH存储能力。北海和爱尔兰海洋耗尽的气场被认为是对将来的氢存储特别有希望的,因为它们已证明存储储存库的容量,Caprock的完整性和数据可用性对于安全有效的运营至关重要,现有的基础设施可以快速开发大型氢存储。Hystorpor项目还考虑在英国盐水含水层和陆上气田中存储氢,因为这些项目还可以支持更接近消费者的未来氢网格操作。Hystorpor将评估潜在的盐水含水层以及陆上和海上气场,以确定现实世界中氢存储现场演示项目的低风险存储资产。
摘要:大规模地下氢气储存有望在能源转型和不久的将来的可再生能源系统中发挥关键作用。尽管具有这种潜力,但地下储氢的经验仍然有限。这项工作严格审查了这项关键技术的最重要要素,包括氢的特性及其对地下作业的意义、氢的来源和历史储氢作业,以确定最先进的技术。储氢作业的周期性将在储层内产生压力和应力变化,这可能会影响井、储层、盖层和整个地下储存综合体的完整性。为了最大限度地降低地质力学泄漏风险并优化储存操作,了解储存地点的压力和应力历史、优化井位以管理压力以及确定储层特定的缓冲气体与工作气体的比率至关重要。最后,我们概述了确保大规模安全高效部署地下储氢所需的主要科学和操作挑战。
注入温室气(例如二氧化碳)进入深层地下水库以进行永久存储,当注射诱导的应力超过关键阈值时,会无意中导致故障重新激活,Caprock破裂和温室气体泄漏。必须在注射过程中密切监测压力的演变和二氧化碳羽流的运动,以允许及时进行补救措施或快速调整存储设计。在注射过程的各个阶段提取预先存在的流体,称为压力管理,可以减轻相关的风险并减少环境影响。但是,确定最佳压力管理策略通常需要数千个模拟,从而使该过程计算出色。本文介绍了一种基于替代模型的新型强化学习方法,用于为地质二氧化碳隔离设计最佳的压力管理策略。我们的方法包括两个步骤。首先,通过嵌入到控制方法开发替代模型,该方法采用编码型转换结构来学习潜在或减小空间中的动力学。利用这种代理模型,利用强化学习来找到一种最大化经济利益的最佳策略,同时满足各种控制限制。加固学习代理人将获得潜在的状态表示,并立即为CO2隔离量身定制的奖励,并选择受预定义工程限制的实时控制,以最大程度地提高长期累积奖励。为了证明其有效性,该框架应用于将CO2注入盐水含水层的组成模拟模型。结果表明,我们基于替代模型的强化学习方法显着优化了CO2固相策略,与基线情景相比,经济增长显着。
马来西亚近海二氧化碳封存的地质力学可行性分析 A. Haghi 1、S. Otto 1、R. Porjesz 1、J. Formento 1、J. Park 2、H. Gu 2、K. Bt Mohamad 3 1 CGG;2 SKEO;3 PETRONAS 摘要 对深层地质构造中潜在的二氧化碳封存地点进行地质力学筛选是一项巨大的挑战,特别是在沙捞越近海等构造活跃区。在本研究中,我们收集现有日志和井下应力和压力测量值,为该油田三个战略位置的井构建一维力学地球模型。我们绘制了剪应力水平 (SSL) 和压力室 (PR),以评估由于注气引起的断层重新激活或压裂导致二氧化碳通过盖层泄漏的风险。研究区域目前的应力状态以走滑状态为特征,与附近西巴兰线观测到的运动一致。利用世界应力图数据库,我们基于研究区域内11口海上钻井的142个井眼崩裂数据,确定了平均SH方向为N112°(±19°),这与东南东向巽他板块的绝对运动方向一致。根据本研究中改进的评分方法,我们发现SSL和PR值处于可接受至非常好的范围内。然而,摩擦平衡失效分析得出了PR的下限。本文概述的新型地质力学筛选方法提供了一种快速有效的方法,可以在进行详细表征之前识别适合CCS的储层。