a 诺拉宾特阿卜杜拉赫曼公主大学科学学院物理系,邮政信箱 84428,利雅得 11671,沙特阿拉伯 b 卡玛维尔巴劳帕蒂尔学院 Rayat Shikshan Sanstha 物理系,瓦希,新孟买,400703,马哈拉施特拉邦,印度 c 哈立德国王大学科学学院物理系先进功能材料与光电子实验室(AFMOL),沙特阿拉伯阿卜哈 61413 哈立德国王大学先进材料科学研究中心(RCAMS),沙特阿拉伯阿卜哈 61413,邮政信箱 9004 e 阿斯旺大学科学学院物理系,埃及 f 吉赞大学科学学院物理系,邮政信箱。 114,吉赞,45142,沙特阿拉伯 g 昌迪加尔大学化学系和大学研究与发展中心,莫哈里 - 140413,旁遮普,印度 h 佛罗里达理工大学环境工程系纳米生物技术实验室,莱克兰,佛罗里达州 33805,美国 i 石油和能源研究大学工程学院,德拉敦,248007,印度
在CDSETE/CDTE太阳能电池中引入硒已导致归因于散装缺陷的钝化的设备性能。在这项工作中,对具有不同SE浓度的一系列CDSETE/CDTE薄膜进行高分辨率的阴极发光实验,以量化SE的机理和钝化作用。我们证明了SE浓度和辐射效率之间的普遍依赖性,以及CDTE和CDSE 0.4 TE 0.6之间发光的10倍。原始的发光图被转换为SE浓度的地图,揭示了其在堆栈中的分级轮廓。我们证明了SE沿氯化镉退火处理引起的CDTE晶界的扩散并确定扩散系数,在晶界,在晶界的扩散系数是晶粒内部的八倍以上。这些结果为SE分布及其对CDSETE/CDTE太阳能电池的钝化的影响提供了微观见解。
作为抗生素的潜在替代品,硫化镉和氧化锌纳米颗粒(CDS和ZnO NPS)分别使用激光消融和直接化学过程创建。硫化镉,去离子水,硝酸锌和氢氧化钠的靶标被用作前体。使用不同的表征技术来表征CD和ZnO NP。X射线衍射用于确认CD和ZnO具有平均晶体尺寸分别为54.16 nm和29.23 nm的多晶结构。ZnO颗粒的直径为51.65 nm的密集填充2D弯曲的纳米曲线,而CDS颗粒的直径为51.65 nm,而CDS颗粒则由来自Fe-Sem图像的34.53 NM NM的球形和半球体形态组成,并具有球形和半球体形态。根据AFM的说法,ZnO和CD的平均晶粒尺寸分别为37.51 nm和79.64 nm。通过FTIR验证了生产的纳米粒子的纯度。ZnO的估计能隙为4.25 eV,CD为2.5 eV。关于革兰氏阳性和革兰氏阴性细菌菌株以及真菌菌株,CD和ZnO NP具有相关的抗微生物敏感性。与表皮链球菌和克雷伯氏菌相比,所产生的纳米粒子的抗细菌活性对金黄色葡萄球菌和大肠杆菌具有更大的抑制作用。但是,念珠菌的值较高39mm。(2024年10月17日收到; 2025年1月4日接受)关键词:CDS,ZnO激光消融,简单化学,表面形态,生物医学1.[6–8]。[10,12]。简介直径为1-100 nm的纳米颗粒(NP)近年来引起了很多关注,因为它们具有各种吸引人的光电,电气和抗细菌功能。因为细菌感染性疾病已经引起了全球关注,这是严重的健康问题,可能会对人类生活的社会,经济和医学方面产生影响。“致病性菌株的暴发和感染增加,细菌抗生素抗性,引入新的细菌突变,缺乏贫困国家的足够疫苗接种以及与医院相关的疾病是对人类的全球健康风险,尤其是儿童的全球健康风险,尤其是在几种生物上使用,包括生物疾病,包括CDS NP的诊断,包括生物疾病,包括生物诊断,并在内组织病理学。众所周知,当材料变小(到纳米级)时,它们的物理,化学和生物学特征会发生重大变化,因为其巨大的表面积,静电力的存在,随之而来的量子尺寸效应等。文献对几种重要的半导体纳米材料的制备和表征进行了详尽的报道,包括CDO,ZNS,CDS,CDSE和CDTE NPS [7,8]。由于其在批量状态下具有出色的光敏性和2.43 eV的宽带间隙能量,因此CDS NP是II-IV组中研究最多的二元硫化剂之一[9]。锌氧化物是半导体,具有较大的带隙3.37 eV。令人惊讶的是,许多调查发现ZnO-NP不会损害人类细胞。氧化锌纳米颗粒(ZnO NP)是一系列生物应用的有趣前景,因为它们的出色稳定性,生物兼容性和低毒性。ZnO纳米颗粒非常有效地针对广泛的微生物,包括细菌,病毒和真菌,因为它们具有特殊的物理化学特征。由于具有这种特征,它们是有效的抗菌剂,对微生物不胡态,并且具有
15:30 从大众社会到社会资本 ECON SPS/09 15:30 商法(A) AE ECON IUS/04 15:30 商法(A) FO ECON IUS/04 15:30 商法(A) PZ ECON IUS/04 15:30 航海法 LMGI IUS/06 15:30 高级商法 SCEC IUS/04 15:30 数字法、信息技术和新技术 PSIC IUS/01 15:30 性别暴力:法律、心理和社会学方面 SCEF IUS/01 15:30 性别暴力:法律、心理和社会学方面 STPS IUS/01 15:30 性别暴力:法律、心理和社会学方面 SEGI IUS/01
摘要 不同行业的有机化合物在废水中产生一系列有害污染物,硫化镉(CdS)基光催化剂作为典型的光催化材料,由于其高效性和稳定性,具有强的可见光吸收、合适的能带能级和优异的电子电荷传输性能,在环境修复领域显示出巨大的潜力。硫化镉(CdS)基光催化剂降解有机污染物的研究取得了重要进展。为了提高硫化镉(CdS)基光催化剂降解污染物的速率和能力,本文介绍了各种修饰光催化剂形貌和结构的策略来提高其性能。此外,还优化了反应条件,并讨论了光催化降解的机理。总之,硫化镉基光催化剂的研究为有机污染物的降解提供了有价值的见解,并为其未来在生态环境保护中的应用带来了希望。关键词:光催化剂、CdS、环境修复、污染物、有机化合物
cds薄膜是通过化学沉积在玻璃基材上制备的,以便在薄膜光电接种者中作为缓冲层的潜在用途。使用X射线相分析和拉曼光谱法,确定在最佳技术条件下合成的CD膜在六边形的wurtzite结构中结晶。已经表明,沉积时间会影响合成材料的生长速率,形态和微观结构特征。随着在给定溶液温度下的沉积时间的增加,观察到表面粗糙度的显着降低,伴随着晶体簇和微结构缺陷的大小减少。CD膜的光节间隙为2.53 - 2.57 eV。光致发光光谱中明显的绿色发射带的存在表明CD膜具有高度的结晶度,最小的缺陷密度。
摘要:单光子来源对于推进量子技术至关重要,可扩展的集成是至关重要的要求。迄今为止,大规模光子结构中单光子源的确定性定位仍然是一个挑战。在这种情况下,胶体量子点(QD),尤其是核心/外壳配置,由于其解决方案的加工性而具有吸引力。但是,传统QD通常很小,约为3至6 nm,这限制了它们在大规模光子设备中的确定性位置和实用性。最大的现有核/壳QD是巨型CDSE/CDS QD的家族,总直径约为20至50 nm。推动超过此尺寸限制,我们使用逐步高温连续注射方法引入了巨大CDSE/CDS QD的合成策略,尺寸范围从30到100 nm。电子显微镜揭示了一个一致的六角形钻石形态,由十二个半极化{101̅1}方面和一个极(0001)刻面组成。我们还确定了破坏壳生长的条件,导致缺陷,岛屿和机械不稳定性,这表明将晶体颗粒生长到100 nm以上。厚CD壳在CDSE核上的逐步生长可以使发射QD的合成长度发光寿命为几微秒,并在室温下抑制眨眼。值得注意的是,具有100个CDS单层的QD具有高单光子发射纯度,二阶光子相关G(2)(0)值低于0.2。我们的发现表明,巨大的核心/壳QD可以有效地发出单个光子,这为需要确定性放置单光子源的量子光子应用铺平了道路。
通过强光 - 膜相互作用产生激子 - 极性的产生代表了量子现象的新兴平台。基于胶体纳米晶体的极化系统的一个重大挑战是能够在室温下以高保真度操作。在这里,我们通过与Fabry-Pérot光腔的CDSE纳米片(NPL)偶联(NPLS)偶联,演示了室温的生成量 - 极光量。量子古典计算准确地预测了许多黑暗状态激子与光学允许的极化状态之间的复杂动力学,包括实验观察到的较低的北极星pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Pho-To-To-To-Pho-To-To-To-Pho-To-To-Pho-To-To-To-To-To-To-To-To-To-To-To-Pho-To-To-Plo-To-To-Palliminencence浓度的浓度在较高的平面量较高时,随着蛀牙的越来越较大,较高的平面矩处的浓度。在5 K处测得的Rabi分裂与300 K时相似,从而验证了该极化系统的温度无关操作的可行性。总体而言,这些结果表明,CDSE NPL是促进室温量子技术发展的绝佳材料。
信息的爆炸性增长及其广泛的可用性强调了对强大的加密和反对措施的需求。在这项研究中,CD量子点进行了设计(QD),以通过战略配体设计对单个触发器表现出多种视觉响应。表面工程方法允许QD在光激发引起的电子从CD(II)转移到CD(0)时从黄色变为黑色。表面配体在孔注入下解吸,导致QDS大小增加,并导致光致发光的红移。这种光激发引起的氧化还原反应揭示了前所未有的光致变色和光致发光现象,为先进的信息保护措施建立了基础。利用这些QD,在固态底物中实现了紫外线照射下的出色写作性能,而双模式加密系统则在凝胶矩阵中实现,为信息加密以及累积和交互式信息保护开放了新的途径。此外,CDS QD的氧化还原反应被用作3D打印的墨水,从而通过控制墨水中的氧气含量来调节光致变色的速率,从而创建具有数字可编程的材料。这一进步还阐明了3D打印技术的进度。
在CDSETE/CDTE太阳能电池中引入硒已导致归因于散装缺陷的钝化的设备性能。在这项工作中,对具有不同SE浓度的一系列CDSETE/CDTE薄膜进行高分辨率的阴极发光实验,以量化SE的机理和钝化作用。我们证明了SE浓度和辐射效率之间的普遍依赖性,以及CDTE和CDSE 0.4 TE 0.6之间发光的10倍。原始的发光图被转换为SE浓度的地图,揭示了其在堆栈中的分级轮廓。我们证明了SE沿氯化镉退火处理引起的CDTE晶界的扩散并确定扩散系数,在晶界,在晶界的扩散系数是晶粒内部的八倍以上。这些结果为SE分布及其对CDSETE/CDTE太阳能电池的钝化的影响提供了微观见解。