达美乐集团澳大利亚分公司首席执行官兼董事总经理 Don Meij 评论道:“在当前环境下,食品安全和卫生从未如此重要,DOM Pizza Checker 在让顾客全面了解餐食方面发挥了重要作用。世界上没有一家快餐店可以向顾客保证他们的订单已经通过了严格的质量测试,并向他们发送他们将收到的餐食的实时图像。现在,顾客也可以放心,因为他们知道他们的披萨是在食品安全和卫生的前提下制作的,DOM Pizza Checker 会不断监控切块台,并定期提醒他们进行清洁和消毒。”
目标 介绍我们基于人工智能的症状检查器,严格测量其准确性,并将其与现有的流行症状检查器和经验丰富的初级保健医生进行比较。 设计案例研究。 设置 400 个黄金标准初级保健案例。 干预/比较器我们使用了 7 个标准准确性指标来评估 6 个症状检查器的性能。为此,我们开发并同行评审了 400 个案例,每个案例都得到了 7 名独立且经验丰富的全科医生中至少 5 名的认可。据我们所知,这产生了迄今为止该领域最大的基准案例套件。 为了建立参考框架并相应地解释症状检查器的结果,我们进一步将表现最佳的症状检查器与 3 名平均经验为 16.6 年的初级保健医生直接进行比较。主要结果测量我们从 7 个标准角度彻底研究了症状检查者和医生的诊断准确率,包括:(a) 𝑀 1、𝑀 3 和 𝑀 5 分别作为症状检查者或医生在前 3 种疾病中或前 5 种鉴别诊断疾病中返回小插图主要诊断的能力的测量指标;(b) 召回率作为症状检查者或医生鉴别诊断中返回的相关疾病百分比的测量指标;(c) 精确度作为症状检查者或医生鉴别诊断中相关疾病百分比的测量指标;(d) F1 测量作为召回率和精确度之间的权衡测量指标;(e) 归一化折现累积增益或 NDCG 作为症状检查者或医生鉴别诊断排名质量的测量指标诊断。结果 我们的基于 AI 的症状检查器 Avey 的表现明显优于 5 种流行的症状检查器,即 Ada、WebMD、K Health、Buoy 和 Babylon,使用 𝑀 1 时平均高出 24.5%、175.5%、142.8%、159.6%、2968.1%;使用 𝑀 3 时平均高出 22.4%、114.5%、123.8%、118.2%、3392%;使用 𝑀 5 时平均高出 18.1%、79.2%、116.8%、125%、3114.2%;使用召回率时平均高出 25.2%、65.6%、109.4%、154%、3545%;使用 F1 测量时分别为 8.7%、88.9%、66.4%、88.9%、2084%;使用 NDCG 时分别为 21.2%、93.4%、113.3%、136.4%、3091.6%。在精度方面,Ada 平均比 Avey 高出 0.9%,而 Avey 分别比 WebMD、K Health、Buoy 和 Babylon 高出 103.2%、40.9%、49.6% 和 1148.5%。与症状检查员相反,医生在使用精确度和 F1 测量时比 Avey 平均高出 37.1% 和 1.2%,而 Avey 在使用 𝑀 1、𝑀 3、𝑀 5、召回率和 NDCG 时分别比他们平均高出 10.2%、20.4%、23.4%、56.4% 和 25.1%。为了提高我们研究的可重复性并支持未来的相关研究,我们公开并免费提供了所有黄金标准小插图。此外,我们在网上发布了症状检查员和医生的所有结果(即 45 组
人工智能在医疗保健中的症状检查 人工智能的定义是“能够执行通常需要人类智能的任务的计算机系统的理论和开发,例如视觉感知、语音识别、决策和语言之间的翻译。”
Resistance Spot Welding Hot Bar Bonding/ Reflow Soldering/ ACF Bonding Weld Checker & Monitoring System Accessories and Others WeldHead Laser Welding/ Laser Cutting Systems Hermetics Sealing Systems Glovebox Systems AIM Solder Material COOL CLEAN Heraeus (FUSION) UV Curing System Nordosn EFD EIT Radiometer Products TECH-SONIC Ultrasonic Metal Welding MIDAS Microelectronics Rework System EFFIMAT Storage System PBA掩盖
1. “V” 编号 2. 项目标题 3. 图纸标题 4. 图纸编号 5. PE 印章或状态印章(在 PSnE 处删除状态印章) 6. 设计师、绘图员、审阅者、检查员的姓名(如适用)
扩散概率模型(DDPM)[39,40],通过开发合适的3D表示,例如,体积网格[50],点云[3,53],三角形网格[24,32],隐式含量[24,32],隐式代表[12,28,36,36,36,36,56,36,56,36,36,36,56)。但是,这些生成模型的一个共同主题是匹配由训练数据定义的经验分布以及从潜在空间的先前分布中得出的诱导分布。这些方法在3D域中对下游应用程序至关重要的3D域中没有明确模型。考虑使用隐式形状代表的许多状态形状发生器。合成形状通常具有断开的作品,并具有其他物理稳定性和几何可行性的问题。现有技术的一个主要问题是,他们只看到培训实例,这是一组非常稀疏的样本。但是,它们没有对合成实例的几何和物理特性进行建模。这种问题不容易通过开发合适的神经代表来解决。随着人造形状具有多种拓扑结构,在可以对不同拓扑结构建模的代表下执行这些属性,例如隐式表面和点云仍然非常具有挑战性。在本文中,我们介绍了一种名为GPLD3D的新颖方法,该方法极大地增强了合成形状的几何学性和物理稳定性。考虑一个预先训练的生成模型,该模型将潜在空间映射到形状空间。我们将潜在扩散范式[12,34,36,56]证明是一种最先进的形状基因产生模型。与训练一个扩散模型不同,该模型将潜在空间的高斯分布映射到由训练形状的潜在代码定义的经验分布,我们介绍了一个潜在代码的优质检查器,以定义潜在空间的连续正规化分布。此质量检查器集成了一个学到的功能,该功能量化了合成形状的几何可行性评分以及量化其物理稳定性评分的刚度ma-Trix的光谱特性。我们展示了如何扩展最新的扩散框架EDM [20],以整合数据分布和学习质量的denoising网络的质量检查器。关键贡献是一种原则性的方法,它决定了数据分散的损失条款与不同噪声水平的质量检查器之间的权衡参数。我们已经评估了shapenet-v2上GPLD3D的性能[6]。实验结果表明,在多个指标上,GPLD3D显着优于最先进的形状发生器。我们还提出了一项消融研究,以证明合并质量检查器并优化训练损失的超参数的重要性。
扩散概率模型(DDPM)[39,40],通过开发合适的3D表示,例如,体积网格[50],点云[3,53],三角形网格[24,32],隐式含量[24,32],隐式代表[12,28,36,36,36,36,56,36,56,36,36,36,56)。但是,这些生成模型的一个共同主题是匹配由训练数据定义的经验分布以及从潜在空间的先前分布中得出的诱导分布。这些方法在3D域中对下游应用程序至关重要的3D域中没有明确模型。考虑使用隐式形状代表的许多状态形状发生器。合成形状通常具有断开的作品,并具有其他物理稳定性和几何可行性的问题。现有技术的一个主要问题是,他们只看到培训实例,这是一组非常稀疏的样本。但是,它们没有对合成实例的几何和物理特性进行建模。这种问题不容易通过开发合适的神经代表来解决。随着人造形状具有多种拓扑结构,在可以对不同拓扑结构建模的代表下执行这些属性,例如隐式表面和点云仍然非常具有挑战性。在本文中,我们介绍了一种名为GPLD3D的新颖方法,该方法极大地增强了合成形状的几何学性和物理稳定性。考虑一个预先训练的生成模型,该模型将潜在空间映射到形状空间。我们将潜在扩散范式[12,34,36,56]证明是一种最先进的形状基因产生模型。与训练一个扩散模型不同,该模型将潜在空间的高斯分布映射到由训练形状的潜在代码定义的经验分布,我们介绍了一个潜在代码的优质检查器,以定义潜在空间的连续正规化分布。此质量检查器集成了一个学到的功能,该功能量化了合成形状的几何可行性评分以及量化其物理稳定性评分的刚度ma-Trix的光谱特性。我们展示了如何扩展最新的扩散框架EDM [20],以整合数据分布和学习质量的denoising网络的质量检查器。关键贡献是一种原则性的方法,它决定了数据分散的损失条款与不同噪声水平的质量检查器之间的权衡参数。我们已经评估了shapenet-v2上GPLD3D的性能[6]。实验结果表明,在多个指标上,GPLD3D显着优于最先进的形状发生器。我们还提出了一项消融研究,以证明合并质量检查器并优化训练损失的超参数的重要性。
诊断疾病状况和确定治疗方案是医生的主要目标。医生需要收集患者病史和信息。然而,有些患者倾向于根据收到的信息进行自我诊断;他们关注自己知道的、普遍存在的或使用互联网等工具的信息。一种常用的工具是 Web MD 症状检查器,它输入健康的社会决定因素及其症状,网站提供可能的结果列表。然而,随着 ChatGPT 和 Bard 等生成式 AI 工具的创新,许多患者和医生正在使用一种新工具作为新的“症状检查器”。患者将输入他们的信息和症状来确定可能的健康问题,并得到各种结果。这些解决方案可以帮助患者积极参与他们的治疗和健康之旅,并可能有助于提高医生诊断的速度和准确性。然而,这些工具引发了无数担忧,包括 HIPAA 方面的隐私、准确性和信息所有权。
摘要 重写逻辑及其实现 Maude 是一种用于软件和其他类型系统的形式化规范和验证的表达框架。并发性自然地由在方程理论中对代数项应用重写规则产生的非确定性局部变换表示。系统的某些全局行为或额外约束有时需要限制这种不确定性。重写策略被用作更高级和模块化的资源,以干净地捕获这些要求,这些要求可以通过集成的策略语言在 Maude 中轻松表达。然而,策略感知规范无法用内置的 LTL 模型检查器来验证,这使得策略的实用性和吸引力降低。在本文中,我们讨论了策略控制系统的模型检查,并提出了 Maude LTL 模型检查器的策略感知扩展。讨论了策略语言与模型检查的关系的表达能力,用多个应用示例说明了模型检查器,并比较了其性能。