2。 div>пососто警7→7月7日μ f,。,□барбарбар归,•ар归я截至希腊,佐治亚州,丹麦,多米尼加共和国,以色列,印度,印度尼西亚,约旦,爱尔兰,冰岛,西班牙,意大利,哈萨克斯坦,加拿大,卡塔尔,中国,中国,韩国民主共和国,哥伦比亚,哥斯达黎加共和国马来西亚,马来西亚,马来西亚摩洛哥,墨西哥,摩纳哥,荷兰(王国),尼加拉瓜,新西兰,挪威,阿拉伯联合酋长国,阿曼,阿曼,巴拿马,秘鲁,波兰,波兰,葡萄牙,摩尔多瓦共和国,摩尔多瓦共和国,摩尔多瓦,俄罗斯联邦,俄罗斯联邦爱onia Serbia, Singapore, Slovakia, Slovenia, the United Kingdom, the United States of America, Tajikistan, Trinidad and Tobago, Tunisia, Turkey, Uzbekistan, Ukraine, Uruguay (date of January 7, 2025), Philippines, Finland, France, Croatia, Montenegro, Czech Republic, Chiles, Chiles, Chiles, Chiles瑞士,瑞典,爱沙尼亚,南非和日本(90)。
在IOM开发基金的支持下,该项目旨在加强地方当局和社区的能力,以应对哥斯达黎加环境移民的驱动力。为此,该项目的第一阶段包括对Los Chiles和PuertoJiménez广州的社会和气候环境的以性别为中心的诊断评估。随后,包括研讨会在内的宣传运动鼓励与气候变化相关的风险以及缓解它们的适应选择。行动包括对性别敏感社区和家庭气候变化适应计划的发展。最后,这些计划中计划的适应策略将在Los Chiles和PuertoJiménez的先前能力开发中进行测试。
1宾夕法尼亚州匹兹堡匹兹堡医学中心; 2 Earle A辣椒研究所,普罗维登斯癌症研究所,波特兰,俄勒冈州; 3 MD安德森癌症中心,德克萨斯州休斯敦; 4佛罗里达州萨拉索塔的佛罗里达癌症专家/莎拉·坎农研究所; 5宾夕法尼亚州费城宾夕法尼亚大学医学系; 6 Hotspot Therapeutics,Inc,马萨诸塞州波士顿; 7 Elite Biopharma Consulting,马萨诸塞州波士顿; 8纪念斯隆·凯特林癌症中心,纽约,纽约; 9威尔·康奈尔医学院,纽约,纽约; *通讯作者
这种观点忽视了当今工作系统的高度复杂性:在大多数情况下,在给定的限制和边界下的应用是系统设计的关键部分。Salas (2008) 和 Meister (1999) 认为科学发现往往缺乏对实践的明确意义。此外,研究论文中的许多发现不能直接转移到实践问题中。特别是在实验室研究中,受控因素往往比实际研究的变量更受实践者关注(参见Wilson,2000;Chapanis,1988;Chiles,1971)。因此,实践中的应用伴随着许多不确定性,这使得这些知识对于许多实际问题的相关性值得怀疑。在实践中知识应用的困难在“研究者-实践者差距”这一术语下进行了讨论(参见Salas,2008;Dekker & Nyce,2004;Buckle,2011;Chung & Shorrock,2011)。
如果没有多个个人和组织的宝贵支持和合作,本研究项目就不可能实现。我们要对 BSI 在此项努力中的合作表示最深切的感谢,特别是教育和发展经理 Matthew Chiles 博士、环境、社会和治理标准主管 Dawn Hunter、标准开发经理 John Ross、大学合作伙伴关系经理 Emma Glass、数字/高价值制造部门负责人 Ben Sheridan 和医疗保健部门负责人 Rob Turpin 他们提供的见解、广泛支持和资源对该项目的成功完成至关重要。我们也非常感谢 Irina Brass 博士在整个过程中的不断指导。她的周到指导极大地影响了我们工作的方向。我们还要感谢 Jean- Christophe Mauduit 博士和 Maria Cross 博士的评论和反馈,帮助我们改进工作质量。最后,我们要向所有参加我们的访谈和研讨会的专家致以诚挚的谢意。您的贡献非常宝贵,我们非常感谢您与我们分享的时间和知识。
1。放射学系;翻译医学中心;广州纳米生物医学技术研究和开发的主要实验室,用于诊断和治疗以及广东省教育部纳米免疫调节肿瘤微环境的主要实验室;中央实验室,广州医科大学第二附属医院,中国510260,中国。2。武士医学院武士医学院放射学系,中国北哥441000。3。营养部;广东省级食品主要实验室,公共卫生学院,孙子森大学,广州510080,中国。4。中国传统中药分校的Shunde中医医院放射学系,中国528000。 5。 广州市政和广东省分子靶标和临床药理学,NMPA和州呼吸道疾病的国家主要实验室,药学学院和第五家附属医院,近510260,中国的广州医科大学。 6。 病理学系,广州公民大学第二附属医院,中国510260。 7。 微创介入的分裂;中国南部肿瘤学的国家主要实验室;中国广州510060的孙子森大学癌症中心合作创新癌症医学中心。 8。 中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。 9。中国传统中药分校的Shunde中医医院放射学系,中国528000。5。广州市政和广东省分子靶标和临床药理学,NMPA和州呼吸道疾病的国家主要实验室,药学学院和第五家附属医院,近510260,中国的广州医科大学。6。病理学系,广州公民大学第二附属医院,中国510260。7。微创介入的分裂;中国南部肿瘤学的国家主要实验室;中国广州510060的孙子森大学癌症中心合作创新癌症医学中心。8。中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。 9。中国510260的Sun Yat-Sen University Sun Yat-Sen Memorial Hospital的干预治疗系。9。Earle A. Chiles研究所,Providence Cancer Institute,4805 NE Glisan St.,Suite 2n35,Portland,OR 97213,美国。Earle A. Chiles研究所,Providence Cancer Institute,4805 NE Glisan St.,Suite 2n35,Portland,OR 97213,美国。
1 美国宾夕法尼亚州费城杰斐逊健康中心 Sidney Kimmel 癌症中心肿瘤内科;2 俄罗斯联邦奥布宁斯克 NMR С 放射科 A. Tsyb 医学放射学研究中心;3 美国俄亥俄州哥伦布俄亥俄州立大学综合癌症中心肿瘤内科;4 法国里昂 Léon Bérard 中心肿瘤内科;5 澳大利亚昆士兰州昆士兰大学皇家布里斯班妇女医院癌症护理服务部;6 美国加利福尼亚州洛杉矶/托伦斯加州大学洛杉矶分校大卫格芬医学院海港-加州大学洛杉矶分校医学中心伦德奎斯特研究所;7 韩国首尔国立大学医学院内科;8 俄罗斯联邦莫斯科 NN Blokhin 俄罗斯癌症研究中心头颈部肿瘤科; 9 加拿大安大略省多伦多玛格丽特公主癌症中心肿瘤内科和血液科;10 法国维尔瑞夫古斯塔夫鲁西核医学和内分泌肿瘤科;11 美国新泽西州伍德克利夫湖卫材公司肿瘤临床研究部;12 美国新泽西州伍德克利夫湖卫材公司生物统计学部;13 美国俄勒冈州波特兰普罗维登斯癌症研究所 Earle A. Chiles 研究所
美国国家监管公用事业委员会 (NARUC) 合作与创新中心 (CPI) 监管机构的金融工具箱系列探讨了公用事业监管机构可以使用哪些类型的金融工具来支持有利于公众利益的电力系统技术整合。本简报由 Hunterston Consulting LLC 的 Jamie Scripps 编写,基于美国能源部资助的 1 项工作,奖励编号为 DE-OE0000925。演讲者的演讲和录音可在 www.naruc.org/cpi-1/electricity-system-transition/valuation-and-ratemaking/ 找到。2022 年 2 月 9 日,作为 NARUC 冬季政策峰会的一部分,五个 NARUC 员工小组委员会(能源资源和环境、费率设计、电力、电力可靠性和弹性以及消费者和公共利益)共同主持了两场关于社区太阳能的会议。第一个小组讨论的主题是社区太阳能 I:对中低收入消费者的益处,由主持人、科罗拉多州公共事业委员会主席 Eric Blank 致开幕词,Arcadia 政策和市场开发副总裁、社区太阳能使用联盟 (CCSA) 代表 Richard Caperton、Groundswell 高级项目总监 Chris Nichols 和华盛顿可持续能源公用事业公司董事总经理 Ted Trabue 进行演讲。查看演讲和录音。第二个小组讨论的主题是社区太阳能 2 是什么:对参与者和非参与者的成本影响,由主持人、佐治亚州公共服务委员会能源效率和可再生能源部门主任 Jamie Barber 致开幕词,明尼苏达大学汉弗莱公共事务学院副教授 Gabriel Chan 博士、Strategen Consulting 董事总经理 Matthew McDonnell 和 Vote Solar 东南总监 Katie Chiles Ottenweller 进行演讲。查看演讲和录音。
923-031,针对案件 923-016、923-017、923-018、923-019、923-020、923-021、923-022 和 923-023,2023 年 1 月。资助:2020-2023 年国家科学基金会资助 SES-1949047(与 Isaiah Andrews 合作并与 Matthew Gentzkow 合作)2017-2020 年国家科学基金会资助 SES-1658037(与 Justine Hastings 合作)2016-2018 年罗伯特伍德约翰逊基金会行动政策资助(与 Justine Hastings 合作)2016-2017 年罗素贤者基金会资助 83-17-13(与 Justine Hastings 合作)2015-2016 年罗素贤者基金会资助98-15-09(与 Justine Hastings 合作) 2013-2016 年国家科学基金会拨款 SES-1260411(与 Matthew Gentzkow 合作) 2009-2012 年国家科学基金会拨款 SES-0922342(与 Matthew Gentzkow 合作) 2006-2009 年国家科学基金会拨款 SES-0617658(与 Matthew Gentzkow 合作) 荣誉、奖学金和研究金: 2021 年麦克阿瑟奖学金 2017 年计量经济学会研究员 2016 年布朗大学校长教师奖 2011-2012 年阿尔弗雷德·P·斯隆研究员 2001-2005 年人文研究所,人文研究奖学金 2004-2005 年社会科学基础研究中心,论文完成奖学金 2004-2005 年 Chiles 基金会奖学金2001-2004 美国国家科学基金会,研究生奖学金 其他职位和附属机构: 2017 年微软研究院,商业嘉宾 2015-2016 年微软研究院,咨询研究员 精选受邀演讲: 2013、2023 年 NBER 方法讲座 2021 年哈佛大学 Seymour E. 和 Ruth B. Harris 讲座 2020 年特拉维夫大学 Eitan Berglas 讲座(远程) 2015 年多伦多大学 Malim Harding 访问者 2015 年第十一届计量经济学会世界大会特邀演讲人 2012 年芝加哥大学第八届 Peter B. Pashigian 纪念讲座 教学:2022-博士学位)2022- 数量经济学导论(哈佛大学;博士学位)2015-2021 产业组织(布朗大学;博士学位)2014-2020 大众传媒经济学(布朗大学;学士学位)2013, 2016-2019, 2022
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。