摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。
chirp声音反射系统,有时称为子底剖面,是对海底或湖床下沉积物的超高分辨率(〜十分尺度)成像的宝贵工具。chirp是一种由雷达社区开发的信号处理技术,用于改善回声回报的分辨率(Klauder等,1960)。该技术后来由声纳社区改编(Schock等,1989)。CHIRP信号是一种扫描的频率脉冲,通常在5-30毫秒(MS)之间,其频率在0.5 kHz到24 kHz之间,具体取决于传感器。CHIRP信号处理的基本特征是匹配过滤器(即应用反向卷积),带有已知的即将脉冲函数的返回信号,从理论上讲,该信号将从较长且复杂的声纳脉冲中崩溃,从近距离突击的响应中崩溃。chirp数据是在及时获得的,其中z轴是从chirp到反射器(具有声音响应的海底或更深层的层)的行程,然后返回chirp(双向时间或TWT)。一些CHIRP采集系统会根据水中假定的声速自动显示具有深度Z轴的数据(例如,每秒1500米);但是,记录的数据始终在TWT中。 水平轴是基于每个声纳ping的GPS导航,将其转换为沿调查轨道的距离。每秒1500米);但是,记录的数据始终在TWT中。水平轴是基于每个声纳ping的GPS导航,将其转换为沿调查轨道的距离。
摘要:自发光遥感系统的应用,其中雷达图像正在迅速增长。合成孔径雷达(SAR)系统的独特性质使其成为地面变形监测、地震研究和许多摄影测量应用中最流行和适用的自发光遥感技术之一。有几种处理 SAR 数据的方法和算法,每种方法和算法都适用于不同的目的。本文开发了两种更常见和可靠的算法:距离多普勒算法和 Chirp Scaling 算法。用于处理 SAR 数据的软件包和工具箱(如 DORIS、ROI-PAC、RAT 和 PULSAR)各有优缺点。这些软件包中的大多数都在 Linux 平台上运行,难以使用,并且需要相当多的预处理数据准备。此外,没有通用的 SAR 处理应用程序可以处理所有数据类型或适用于所有目的。还有一些软件包(例如 ROI-PAC)对某些国家/地区的人们有限制。本论文的目标是使用两种更常见的算法处理 SAR 数据,对这两种算法的结果进行比较,并处理 InSAR 对图像以形成干涉图并创建 DEM。为此目的开发了一个基于 Matlab 的程序,该程序具有图形用户界面和一些可视化增强功能,有助于处理数据并产生所需的输出。然后,我研究了不同频域对结果图像的影响。我在论文中创建的程序有几个优点:它是开源的,并且非常容易修改。该程序是用 MATLAB 编码的,因此不需要大量的编程知识就可以对其进行自定义。您可以在任何可以运行 MATLAB 7+ 的平台上运行它。在这篇论文的最后,我得出结论,在 2D 频域中执行二次距离压缩的距离多普勒算法的结果与 Chirp Scaling 算法一样好,并且计算复杂度更低,耗时更少。无法引入通用的 SAR 处理算法。大多数情况下,算法需要针对特定数据集或特定应用程序进行调整。此外,最复杂的算法并不总是最好的算法。例如,对于点目标检测目的,距离和方位角方向的两个滤波步骤可以提供足够准确的结果。
我们的系统由 White 等人 2 详细描述,并如图 1 所示,类似于许多基于激光泵浦钛宝石的 CPA 系统 3' 5,这些系统目前正在使用或商业化生产。由氩离子激光器 (9 W,所有线) 泵浦的商用锁模钛宝石振荡器产生 82 MHz 的 80-100 fsec 脉冲序列,中心波长为 800 nm (10 nm FWHM 高斯光谱分布)。这些 10-15 nJ 脉冲在单个衍射光栅脉冲展宽器 7 中被时间展宽至约 400 psec。展宽器由 1800 线/毫米镀金全息衍射光栅、60 厘米焦距消色差透镜和平面高反射铝镜组成。在通过该展宽器的八次过程中,实现了正群速度色散以及信号丢失。产生的输出脉冲为 4-5 nJ,用于为再生放大器提供种子。