鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。
摘要:目前,脑电图 (EEG) 解码任务中的最佳性能通常通过深度学习 (DL) 或基于黎曼几何的解码器 (RBD) 实现。最近,人们对深度黎曼网络 (DRN) 的兴趣日益浓厚,它可能结合了前两类方法的优势。然而,仍然有一系列主题需要额外的洞察力,为 DRN 在 EEG 中的更广泛应用铺平道路。这些包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能尚未探索。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的 EEG 解码相关。我们的研究旨在通过分析具有广泛超参数的 EEG DRN,为这些主题领域奠定基础。在五个公共 EEG 数据集上测试了网络,并与最先进的 ConvNets 进行了比较。在这里,我们提出了端到端 EEG SPDNet(EE(G)-SPDNet),并且我们表明这种宽的端到端 DRN 可以胜过 ConvNets,并且在这样做时使用生理上合理的频率区域。我们还表明,端到端方法比针对 EEG 的经典 alpha、beta 和 gamma 频带的传统带通滤波器学习更复杂的滤波器,并且性能可以从特定于通道的滤波方法中受益。此外,架构分析揭示了进一步改进的地方,因为整个网络可能未充分利用黎曼特定信息。因此,我们的研究展示了如何设计和训练 DRN 以从原始 EEG 推断与任务相关的信息,而无需手工制作的滤波器组,并强调了端到端 DRN(如 EE(G)-SPDNet)用于高性能 EEG 解码的潜力。
在当今充斥着欺骗和其他欺诈行为的世界里,人们发现生活非常困难。对于盲人或视力有障碍的人来说,情况更糟。他们在日常生活中面临着更多的挑战,特别是在处理货币和其他与金钱有关的问题时。为了帮助盲人,我们正在开发一个项目,帮助他们识别货币的面额,因为钞票上没有盲文标记。伪钞或假钞是另一项难以识别的任务,无论是对健康人还是盲人而言。因此,除此之外,我们还加入了假钞检测系统,帮助每个公民避免被骗。关键词:假钞检测、货币识别、VGG16、盲人、CNN、图像处理。介绍机器学习是一种人工智能能力,它奖励编程应用程序在预测结果时更加谨慎,而无需进行明确修改。ML 计算利用明显的信息作为预期新收益的义务。在神经网络中,卷积神经网络 (ConvNets 或 CNN) 是进行图像分类、图像分析和图像处理的主要方法之一。图像识别、面部识别等是 CNN 广泛应用的领域之一。
摘要。在本文中,我们解决了RGB-D语义分段的问题。解决此问题的关键挑战在于1)如何从深度传感器数据中提取特征,以及2)如何有效地融合从两种模式中提取的特征。对于第一个Challenge,我们发现从传感器获得的深度信息并不总是可靠的(例如,具有反射性或深色表面的对象典型地读取不准确或无效的传感器读数),现有的使用Convnets提取深度特征的方法并未明确考虑不同像素位置的深度值的可靠性。为了应对这一挑战,我们提出了一种新颖的机制,即不确定的自我注意力,该机制明确控制了从无法可靠的深度像素到特征提取过程中的深度像素的信息。在第二个挑战中,我们基于交叉注意力提出了一个有效且可扩展的融合模块,该模块可以在RGB编码器和深度编码器之间自适应地融合和交换信息。我们提出的框架,即uctnet,是一个编码器 - 模型网络,natu-rally将这两个关键设计结合在一起,以实现鲁棒和准确的RGB-D分割。实验结果表明,UCTNET优于效果,并在两个RGB-D语义分割基准上实现最先进的性能。
使用 DGMM²RBCNN 技术进行脑肿瘤检测和分类 Sandhya。 U 助理教授,ECE 系,GRT 工程技术学院,蒂鲁塔尼 电子邮件:sandhya.u@grt.edu.in K Naresh Kumar 助理教授/ECE,GRT 工程技术学院,蒂鲁塔尼 电子邮件:naresh.kr84@gmail.com Saranya AP 助理教授,ECE,GRT 工程技术学院,蒂鲁塔尼 电子邮件:saranya.ap@grt.edu.in N. Jayapal 助理教授,ECE 系,Kongunadu 工程技术学院,Trichy² 621215,泰米尔纳德邦 jayapal385@gmail.com 电子邮件:S. Kumarganesh 博士 教授,ECE 系,知识技术学院,Salem-637504,泰米尔纳德邦 电子邮件:skgece@kiot.ac.in 摘要 --- 多形性胶质母细胞瘤占成人恶性原发性脑肿瘤的 80%,分为两种类型: 高级别胶质瘤(HGG)和低级别胶质瘤(LGG)。LGG 肿瘤的侵袭性低于 HGG 肿瘤,生长速度较慢,对治疗有反应。由于脑肿瘤患者难以进行肿瘤活检,因此磁共振成像 (MRI) 等非侵入性成像方法已被广泛用于诊断脑癌。在本文中,我们利用多序列 MR 数据研究了深度卷积神经网络 (ConvNets) 对脑肿瘤进行分类。使用基于人工智能的解决方案可以早期发现肿瘤。这样,可以尽早发现肿瘤,并解决可能危及人类生命的疾病。该架构用于尽早发现可能的脑癌,这对人类生命构成了严重威胁。