░抽象 - 环境污染的增加,对化石燃料的需求以及较高的燃油经济汽车引起了人们对最近几天创造新的高效运输车辆的担忧。这些天,电动汽车中的大多数开发项目都集中在使车辆更愉快的乘坐。尽管如此,现在的重点应该放在能量及其最有效的使用上。要这样做,您必须注意汽车的起源。此问题的答案可以在混合储能系统(HESS)中找到。这项工作与配备有效HESS的电动汽车(EVS)的有效能源管理系统的设计和实施有关,该系统通过将负载共享结合到该杂交情况下,包括电池和超级电容器组成。为了满足高燃油效率车辆的需求,汽车公司的重点是开发柴油发动机运营的车辆,电动汽车,燃油式车辆,插件电动汽车和混合动力汽车。在本文中提出了多输入双向降压助推器(MIB 3)DC-DC转换器,以提供更大的转换率,以与输入DC电压更大。推荐的多输入转换器的组件较少,并且更简单的控制方法,使其更值得信赖和成本效益。此转换器还具有双向功率流量功能,使其适合在电动或混合动力汽车中再生制动过程中充电电池。建议的拓扑结构使用了三种不同的能源:光伏(PV)面板,电池和一个超电容器。关键字:多输入DC-DC转换器,混合储能系统(HESS),Ultra-Capacitor(UC),BLDC电机。
•贸易研究集中在主要配电系统(传输) - 建筑(径向,环,网状) - 功率类型(AC VS vs vs dc) - 电压:(600V - 6 kV) - 数据包含估计的质量转换器的质量转换器 +电缆•结果•结果 - 压望下降质量降低质量 - 较高的质量 - 尤其是在单个电压上•技术限制•技术•1。•技术•技术范围•技术••技术范围:5•技术 - •技术•1.限制•最大AC:无知
BioMEMS 组,IEMN(UMR 8520 - 法国里尔北部大学)*BP 60069,Avenue Poincaré,59652 Villeneuve d'Ascq cedex,法国 – vincent.senez@isen.fr 摘要:本文介绍了一种使用无源阀门的模拟数字微流体转换器 (ADMC),能够将连续液体流转换为液滴,以实现介电电润湿 (EWOD) 驱动。使用 COMSOL Multiphysics 的微流体应用模式优化了阀门校准、几何特性和损耗减少。关键词:EWOD、片上实验室、微流体。1. 简介微流体装置可以处理微量液体,无论是微通道中的连续流还是疏水表面上的液滴。到目前为止,大多数片上实验室 (LOC) 只采用这两种技术中的一种实现。然而,通过与微电子系统类比,人们很容易理解,根据操作的不同,这两种技术都有各自的优点和缺点。因此,必须研究能够将连续流转换为液滴,反过来,能够将液滴转换为连续流的系统。借助使用 COMSOL Multiphysics 的数值模拟,我们设计了一个模拟(连续流)到数字(液滴位移)微流体转换器 (ADMC)。本文的第二部分介绍了数值模型及其校准,第三部分专门介绍 ADMC 的设计和模拟分析。
图 4.2:1953 年推出的 K2-W 运算放大器(Dan Sheingold 供图) 脉冲编码调制 (PCM) 是早期数据转换器开发的第一个主要驱动力,Alec Hartley Reeves 被普遍认为是 1937 年 PCM 的发明者。(参考文献 7)。在他的专利中,他描述了一种真空管“计数”ADC 和 DAC(参见本书第 3 章)。20 世纪 40 年代,贝尔实验室继续开发数据转换器,不仅用于 PCM 系统开发,还用于战时加密系统。20 世纪 40 年代末和 50 年代初数字计算机的发展激发了人们对数据分析、数字过程控制等的兴趣,并产生了对数据转换器的更多商业兴趣。 1953 年,数据转换领域的先驱 Bernard M. Gordon 在马萨诸塞州康科德的地下室创立了一家名为 Epsco Engineering(现为 Analogic, Inc.)的公司。Gordon 之前曾参与 UNIVAC 计算机的研发,并看到了商业数据转换器的需求。1954 年,Epsco 推出了一款 11 位、50 kSPS 真空管 SAR ADC,称为 DATRAC。该转换器(如图 4.3 所示)通常被认为是此类设备的第一个商业产品。DATRAC 采用 19" × 26" × 15" 外壳,功耗为几百瓦,售价约为 8000.00 美元。虽然真空管 DATRAC 在当时确实令人印象深刻,但固态设备在 20 世纪 50 年代开始出现,最终彻底改变了整个数据转换领域
横河电机株式会社 全球总部 日本东京都武藏野市仲町2丁目9-32 邮编 180-8750 电话:+81-422-52-6316 传真:+81-422-52-6619 http://www.yokogawa.com/an/ 北美 YOKOGAWA CORPORATION OF AMERICA 美国佐治亚州 http://www.yokogawa.com/us/ 南美 YOKOGAWA AMERICA DO SUL LTDA.巴西 http://www.yokogawa.com.br/ 欧洲 YOKOGAWA EUROPE B.V. 欧洲总部 荷兰 http://www.yokogawa.com/eu/ YOKOGAWA ELECTRIC CIS LTD.俄罗斯联邦 http://www.yokogawa.ru/
AC-DC转换器是电动汽车充电系统中必不可少的组件,可将AC功率从充电站转换为直流电源,可用于为电动汽车的电池充电。转换器通常使用控制功率流量和电压级别的电源电路,从而使充电器可以为电池提供最佳的充电电压和电流。可以将转换器集成到车辆中,也可以作为充电站中的单独组件安装。用于电动汽车应用的AC-DC转换器的设计需要考虑效率,功率密度,可靠性和成本等因素。此外,转换器必须遵守安全法规和标准,以确保充电系统对用户和车辆安全。高级AC-DC转换器技术的开发将在广泛采用电动汽车中发挥关键作用,因为它将更快,更高效,更可靠的充电系统。
1) 在断路器 (CB) 打开的情况下,以内部振荡器确定的固定频率为电力电子逆变器通电。这将为 LC 滤波器(与电网断开)通电。2) 将 PLL 同步到滤波器电压,并将逆变器电压控制从固定频率振荡器切换到 PLL。3) 关闭断路器以给网络通电。与任何电源的黑启动一样,网络上的负载必须与基于逆变器的电源的能力兼容。• 如果连接到通电网络,请使用同步检查继电器。
TMI3408 是 1.5MHz 恒频、电流模式降压转换器。该器件集成了主开关和同步整流器,无需外部肖特基二极管即可实现高效率。它是为使用单节锂离子 (Li+) 电池供电的便携式设备供电的理想选择。输出电压可调节至 0.6V。TMI3408 还可以在 100% 占空比下运行,实现低压差操作,从而延长便携式系统的电池寿命。该器件提供两种操作模式,即 PWM 控制和 PFM 模式切换控制,可在更宽的负载范围内实现高效率。
1. 简介 根据其结构,三相交流电机的转速直接取决于极数和网络频率。 在 3ph 380V/50Hz 网络中,对于 2 极电机,额定转速为 50 U/s * 60 = 3000 Upm。 对于直流电机(无刷直流),转速取决于施加的电压。 三相交流电机在工业中具有许多优势,例如无刷运行、无磨损、有利的容量/重量比、高速能力等等。 这些电机可用于许多不同的应用领域,例如铣削和磨削主轴或钻孔机械。 与交流电机相比,直流电机的优点是功率效率高(约 85%),但缺点是不能达到交流电机的扭矩。低速(启动时)时,三相交流电机无法达到交流电机的高速。但是,更高的效率也意味着冷却要求更低,尺寸可以更小。在上述应用中,三相交流电机使用特殊控制装置 - 变频器来操作。这些变频器将固定的 50 Hz 网络转换为具有可变频率和电压的三相网络。这大大减少了高容量三相交流电机连接到固定网络时不可避免的启动问题和高启动电流。电机根据特殊特性进行控制