摘要 — 提出了一种双波段、正交极化线性到圆极化 (LP-to-CP) 转换器的系统设计。这类极化转换器可以在两个独立的非相邻频带中将线性极化波转换为右旋和左旋圆极化 (RHCP 和 LHCP) 波。报道的极化器由三个级联的双各向同性薄片导纳组成,由两个各向同性介电板隔开。通过阻抗边界条件研究电磁问题。设计中采用了周期性加载传输线的传输矩阵分析。建立了一个分析模型,并推导出每个薄片导纳频率响应的闭式表达式。该方法避免了使用多参数优化程序。提出了一种用于 K/Ka 波段卫星通信应用的双波段、正交极化 LP-to-CP 转换器的示例。偏振器在 K/Ka 波段的发射和接收通道上分别执行 LP 到 LHCP 和 LP 到 RHCP 的转换。该设计通过原型进行了验证。在垂直入射下,偏振器在 18-22.2 GHz(∼ 21%)和 28.7-30.4 GHz(∼ 6%)波段上的轴比 (AR) 低于 3 dB。在相同的两个波段内,总透射率高于 -1 dB。扫描角度在 ± 45 ◦ 以内时性能稳定。对于 45 ◦ 的入射角,在 17-22 GHz(∼ 25.6%)和 28.6-30 GHz(∼ 4.7%)波段上的 AR 低于 3 dB,总透射率高于 -1.2 dB。
摘要:目前,在欧洲的几条铁路网络中,使用传统的直流电气化系统,既无法增加交通量,也无法使机车以标称功率运行。轨道旁储能系统 (TESS) 可以作为新建变电站的替代解决方案。TESS 限制接触线电压下降并平滑高峰交通期间吸收的功率。因此,可以在限制成本和环境影响的同时提高电力系统的效率。本文提出了一种基于全 SiC 隔离 DC/DC 转换器的 TESS 新拓扑,该转换器与锂离子电池和电流隔离相结合,为运行安全提供了重大优势。发生故障时,转换器的输入和输出端子将电气分离,并且接触线电压绝不会直接施加到电池上。此外,使用 SiC MOSFET 可以获得具有高开关频率的出色效率。本文第一部分介绍了基本 TESS 模块的主要特性,第二部分针对 1.5 kV 直流线路的典型情况提出了一种尺寸确定方法,该方法表明了使用 TESS 增强电源的局限性。最后,介绍了基本模块原型的实验结果。
Bikash Sah博士收到了B.Tech。2014年,印度印度阿鲁纳恰尔邦(Arunachal Pradesh)的美国国家理工学院电气和电子工程学士学位,以及印度印度古瓦哈蒂(Guwahati)印度印度科技研究所的电子和电气工程博士学位,2021年。他目前是德国Sankt Augustin的Bonn-Rhein-Sieg Applied Sciences of Bonn-Rhein-Sieg University,用于电子动力和电化学系统的集体负责电力电子产品。他还与德国卡塞尔的弗劳恩霍夫能源经济学和能源系统技术IEE IEE合作。他已经从事工业,学术界和研究实验室的项目已经工作了十多年,这些项目涉及电力电子和电化学系统,着重于电动性,电池,电解和燃料电池系统。他目前的研究兴趣包括
注意:1。c1用作带有交流输入的滤波器电容器(必须在外部连接),并用作带有直流输入的EMC滤波器电容器(必须连接),建议使用带有波纹电流>300mA@100kHz的电容器。2。我们建议使用具有高频和低ESR等级的电解电容器作为C3(请参阅制造数据表),当在正常和高温环境中应用时,电解电容器可用于C2。与C2,L1结合使用,它们形成PI型滤波器电路。选择具有至少20%边距的电容器电压额定值,换句话说,C4是陶瓷电容器,用于过滤高频噪声。3。建议在转换器故障的情况下使用抑制器二极管(TVS)来保护应用程序,并且规范应为输出电压的1.2倍。4。L1(2.2UH,P/N:12050504)Mornsun引号。
I.引言全球对可持续能源解决方案的推动力是在耗尽的化石燃料储量和环境问题的驱动下,促进了电力电子产品的进步[1]。关键在这些创新中是双向DC-DC转换器,该转换器最初是为电动机驱动器而设计的,以控制速度和制动[2]。今天,他们的应用跨越了关键部门,例如直流驱动器,微电网,可再生能源存储和混合动力汽车,对于管理电力流量和在高功率情况下稳定电压至关重要[3]。但是,这些转换器在高功率应用中面临一些挑战,例如由于系统流动较大,电感器的大小增加,因此转换器的尺寸增加。另外,由于开关现象,输入电流会产生波动,因此为了克服这些问题,引入了转换器中的相互交流拓扑。此拓扑涉及多个阶段,这些阶段彼此并联以共享功率载荷[1]。
本文提出了与传统控制方法进行比较的DC-DC Boost Converter Control的基于DC-DC Boost Converter Control的基于近端策略优化(PPO)的强化学习方法。使用MATLAB Simulink共模拟对PPO算法的性能进行了评估,结果表明,实现短期结算时间和稳定性的最有效方法是将PPO算法与基于增强学习的控制方法相结合。模拟结果表明,基于RL的控制方法具有PPO算法提供了超过传统控制方法的步骤响应特征,从而增强了DC-DC增强转换器的控制。这项研究还强调了增强学习方法的固有能力,以增强增强转换器控制的性能。
摘要 - 本文介绍了用于电动汽车电池充电应用的单端初级电感转换器 (SEPIC) 的设计和仿真。SEPIC 转换器是一种 DC-DC 转换器,旨在提供稳定的输出电压,同时适应各种输入电压。SEPIC 转换器以其高效率和高可靠性而闻名,可以将输出电压调节为高于或低于输入电压。DC-DC 转换器因其低输出电压纹波和高效率而特别吸引研究人员,使其成为需要低噪声和高功率密度的应用的理想选择。DC-DC 转换器性能和可靠性的不断进步对于满足现代技术日益增长的需求至关重要。SEPIC 转换器与降压-升压转换器有相似之处,结合了降压和升压功能,具有输入和输出电压极性相同、效率高以及输出侧和输入侧之间电容隔离等优点。本文使用 MATLAB 软件对开环和闭环配置中的 SEPIC 转换器进行了仿真,并进行了介绍。
这项工作介绍了利用石墨烯纳米色带效果晶体管(GNRFET)的两,三位和四位模数转换器(ADC)的设计和仿真。该设计中使用的GNRFET设备的通道长度为16 nm,并以0.7 V的电源电压操作。高级设计系统(ADS)用作仿真平台。为了实现紧凑而有效的设计,实施了当前的镜像拓扑来偏置。根据功耗评估了每种ADC配置。在0.7 V电源电压内,设计表现出全范围线性输入特征。这些结果表明,这种ADC设计特别适合在高速纳米电机力学系统(NEM),内存单元和高级计算体系结构中应用。标准晶体管逻辑(STI)的延迟平均降低百分比分别为12%,ADC设计的平均百分比分别为32%。此外,功率优化的三元逻辑电路往往更快地运行。
(1) 电气特性表值仅适用于所示温度下的工厂测试条件。因子测试条件导致器件自热非常有限,例如 TJ=TA。在 TJ>TA 的内部自热条件下,电气表中不保证参数性能。绝对最大额定值表示结温极限,超过该极限,器件可能会永久退化,无论是机械还是电气。(2) 极限由 25 摄氏度下的测试、设计或统计分析确保。工作温度范围内的极限通过使用统计质量控制 (SQC) 方法的相关性来确保。(3) 典型值表示在特性确定时确定的最可能的参数标准。实际典型值可能随时间而变化,也取决于应用和配置。典型值未经测试,不保证在出厂生产材料上有效。(4) 有效分辨率是转换器满量程范围与 RMS 测量噪声之比。(5) 未连接外部电容。5.6 I 2 C 接口电压电平
