•科罗拉多大学(CU)研究生项目在2012年发起了新的Cubesat Mission概念。最初,它专注于研究热圈(Aurora)的远紫外线(FUV)。•FUV成像的数据量对于UHF通信而言太大,因此2013年的重点变为研究太阳能软X射线(SXR)排放,这是电离层的关键能量输入。•提出了该任务称为微型X射线太阳能光谱仪(MINXSS),并于2014年选择。
立方体卫星这种纳米卫星引起了空间科学家和工程师的关注,他们希望观察太空环境并开发空间工程的创新技术。立方体卫星是一种小型卫星,其外形尺寸基于 10 厘米立方体。然而,立方体卫星的尺寸限制限制了将相对较大的任务设备(例如姿态控制系统)嵌入卫星。此外,用于传输数据和为任务设备供电的线束也占用了嵌入任务设备的物理空间。因此,本研究调查了早期关于纳米卫星线束设计的研究。此外,我们考虑了卫星总线系统光学无线线束的可能性,以实现更有效、更可靠的立方体卫星设计。
GLIDE(HPD) GTOSAT(HPD) LAICE(HPD) LLITED(HPD) PETITSAT(HPD) PUNC H(HPD) REAL(HPD) SOLAR CRUISER(HPD) TRACE RS(HPD) SPORT(HPD) SUNRI SE (HPD) IT C (HPD) ESCAP ADE (HPD) SWFO-L1 (JASD) JAN US (PSD)LUNAR开发器(PSD)ACS3(STMD)CISLUNAR Explorer(STMD)单击A(STMD)单击B / C(STMD)Capstone(STMD / HEOMD)COURIER SEP SEP DEMO(STMD)CU-E3(STMD)CU-E3(STMD)CU-E3(STMD)CU-E3(STMD)cu-e3(stmd)
Michael B. Ante2,3,B,Madelene St. Velesco4,C*,Olive St. NG5,D,Joseph Alfred V. V. Gercia2,3,3,E,Fred P.约瑟夫·阿尔弗雷德。 St. Velasco4,Olive St. NG5,D,Joseph Alfred。 Leon1的Michael B.和Ulysses。 Leon的Michael B.,尤利西斯。 Alfred V. Garci2,3和Fred。
与传统卫星相比,Cubesats的挑战开发,生产和发射成本非常低。这引发了行业的利益,以发展自己的立方体。该行业的数量和质量优化的动力导致了Cubesats中电子产品的微型化。为了降低成本,使用了非常成本效益但操作温度范围较小的市售电子产品(COTS)。立方体的相对较高的功率密度意味着更多的功率被转移到同一体积的热量中,从而使组件的热身更快。通过引入大量热量的立方体的推进模块来加剧热问题。没有足够的排热量,立方体组件会迅速过热。
这项工作的重点是用于Cubesat应用的PC/104电子板的开发。特别关注板载计算机模块(OBC)。基于ARM技术的通用OBC由支持各种接口的STM32L4微控制器控制。它的其他功能包括强大的电源管理,单独的外围隔热材料,三重冗余闪光灯和F-RAM内存,两个CAN BUS通信器,内置监控 - 不温度和广泛的有用货物行业。在伽马辐射的来源下,进行了靶向辐射测试。还开发了三个板,包括OBC的双重版本,通用PC/104模块和一个Flatsat测试平台。所有这些董事会都是根据KICAD环境中开源原则推动的。这项工作通过引入用于任务管理系统的测试系统和压缩算法的测试系统的硬件工资来为Vivionspace Technologies VOV104项目做出了贡献。
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
多年来,NASA 的任务保障组织支持了许多大大小小的太空任务和计划。如今,该范围已经扩大,从旗舰任务(如搭载有毅力号探测器的火星 2020、欧罗巴快船和拟议中的欧罗巴着陆器)到小型卫星/立方体卫星(如风暴和热带系统时间实验——演示 (TEMPEST-D) 和火星立方体一号 (MarCO))。塑料封装微电路 (PEM) 变得更具吸引力,因为尖端替代品无法作为太空级产品提供。PEM 通常比太空级产品中使用的陶瓷封装更小、更轻 [1]。随着太空对非密封和塑料封装微电路的需求和使用增加,未来任务的范围也扩大了。与 EEE 零件选择相关的这种不断变化的环境给 NASA 带来了新的挑战,NASA 一如既往地将每项任务的成功视为重中之重。
Satellites, now numbering over 10,000 as of 2024 [43], have transitioned from extraordinary space achievements to common orbital fixtures, especially with the surge in small satellites like CubeSats and nanosatellites. This accessibil- ity has allowed diverse entities, including universities and startups, to engage in space projects. However, the ease of developing these smaller satellites often comes at the cost of security, making them prone to cyberattacks. Teams be- hind these projects may lack comprehensive cybersecurity knowledge, leading to significant vulnerabilities. Furthermore, the evolving nature of cybersecurity means satellite software can quickly become outdated, with updates in orbit posing a challenge, as noted in research like Willbold et al. [47]. Concurrently, there has been a significant evolution in satellite on-board computing, particularly in processing power. This advancement enables small satellites to run full operating systems like Linux, a shift from the basic systems in earlier models. This technological progress enhances satellite func- tionalities but also adds complexity and vulnerability, neces- sitating stronger security measures. As systems become more sophisticated, they are more susceptible to threats, requiring a layered defense approach. Sandboxing is one of the effective methods to isolate software vulnerabilities and protect these advanced systems. In this paper, we discuss the process of selecting a sandbox- ing mechanism for a satellite project currently under develop- ment, named RACCOON [41]. The project's goal is to design