立方体卫星越来越多地被指定用于要求严格的天文和地球观测任务,在这些任务中,精确指向和稳定性是关键要求。立方体卫星很难达到这样的精度,主要是因为它们的转动惯量很小,这意味着即使是很小的干扰扭矩,例如由剩磁矩引起的扭矩,也会对纳米卫星的姿态产生重大影响,当需要高度的稳定性时。此外,硬件在功率、重量和尺寸方面的限制也使这项任务更具挑战性。最近,萨里大学开展了一项博士研究计划,以研究立方体卫星的磁特性。研究发现,通过良好的工程实践,如减少使用导磁材料和最小化电流环路面积,可以减轻干扰。本文讨论了纳米卫星干扰的主要来源,并介绍了一项调查和简要介绍磁性清洁技术,以最大限度地减少剩磁场的影响。它的主要目的是为立方体卫星社区提供指导,以设计未来具有改进姿态稳定性的立方体卫星。然后,我们介绍了迄今为止对立方体卫星和纳米卫星的残余磁偶极子测定新技术的发现。该方法通过在航天器上实施八个微型三轴磁力仪网络来执行。它们用于在轨道上实时动态确定航天器的磁偶极子的强度、方向和中心。该技术将有助于减少磁干扰的影响并提高立方体卫星的稳定性。开发了一个软件模型和一个使用八个通过 Raspberry-Pi 控制的磁力仪的硬件原型,并使用 Alsat-1N 立方体卫星的吊杆有效载荷和为验证目的而开发的磁空心线圈成功进行了测试。引用本文:A. Lassakeur、C. Underwood、B. Taylor 和 R. Duke,《立方体卫星和纳米卫星的磁清洁度计划以提高姿态稳定性》,《航空航天技术杂志》,第 13 卷,第 1 期,第 25-41 页,2020 年 1 月。
[1] Wu,Yue等。“春天:研究论文和推理游戏。”关于神经信息处理系统的第三十七次会议。2023。[2] Ammanabrolu,Prithviraj等。“如何避免被刺激吞噬:文本世界的结构化探索策略。”ARXIV预印型ARXIV:2006.07409(2020)。[3] Yao,Shunyu等。“保持冷静和探索:基于文本的游戏中动作生成的语言模型。”2020年自然语言处理经验方法会议(EMNLP)会议论文集。2020。[4] Wei,Jason等。“经过思考的链条促使在大语言模型中引起推理。”神经信息处理系统的进步35(2022):24824-24837。[5] Madaan,Aman等。“自我refine:迭代精致,并进行自我反馈。”Arxiv预印型ARXIV:2303.17651(2023)。
Swarms of CubeSats for kW-scale Space-Based Solar Power (16U4SBSP) Executive Summary Report (ESR) Study Open Space Innovation Platform (OSIP) campaign, “Innovative Mission Concepts Enabled by Swarms of CubeSats” Affiliation(s): Sirin Orbital Systems AG (Prime, CH), Delft University of Technology (Sub 1, NL), University of Strathclyde (Sub 2, UK) Activity summary: The “16U4SBSP” mission concept is a fundamental technology demonstration step for the realization of kW-/MW-/GW-scale Space-Based Solar Power (SBSP) based on flight formation, a distributed or aggregated swarm of small satellites contrary to conventional concepts of monolithic giant SBSP satellites. In this mission, a swarm of 16U CubeSats collaboratively supply wireless power via Radio- Frequency waves to end-users in different locations on the ground, for instance to provide backup power for emergency situations, and also for space-to-space commercial use-cases.
Maya-3 和 Maya-4 立方体卫星 (CubeSats) 是该国建造的第一批纳米卫星。CubeSats 重约 1 公斤,其 10 厘米立方体框架内装有用于演示基于纳米卫星的远程数据收集系统和光学成像的组件。Maya-3 和 Maya-4 是菲律宾大学迪利曼分校 (UPD) 电气和电子工程学院 (EEEI) 电气工程理学硕士/工程硕士课程的要求。它们是由当地纳米卫星工程研究生项目的第一批学生开发的,该项目由八名学生组成,他们获得了科学技术部-科学教育学院 (DOST-SEI) 的奖学金支持。
摘要:自由空间光学通信在太空中起着重要作用 - 陆地集成网络,因为它的优势包括与常规射频(RF)技术相比,数据速率perfor⁃Mance,低成本,增强安全性。与此同时,Cubesats在低地轨道(LEO)网络中变得很流行。这是造成低成本,快速响应以及组成星座的可能性的原因,并愿意执行单个大型卫星无法做到的任务。但是,在立方体之间建立光学通信链接是一项困难的任务。在本文中,审查了Cubesats上的切割 - 边缘激光技术的进步。显示了立方体上激光链路的字符以及激光通信终端(LCT)设计中的关键技术。
在本文中,我们报告了一个由Cubesats,UAVS及其应用的ARC培训中心(Cuava)设计的,名为Cuava-1。Cuava由澳大利亚研究委员会资助,旨在培训学生,开发新的工具和技术来解决关键问题,并帮助开发在立方体,无人机和相关产品的世界一流的澳大利亚行业。Cuava-1项目是该中心的第一个Cubesat Mission,此后是澳大利亚卫星Inspire-2和UNSW-EC0 Cubesats于2017年推出的。该任务旨在作为一系列地球观测任务的先驱,并展示我们合作伙伴开发的新技术。我们还打算使用卫星为学生提供实践经验,并为我们的工程,科学和行业团队获得未来,更复杂和任务的经验。
摘要。较小的尺寸,降低的成本和快速的产量,每天都在变得重要。如今,几个立方体正在低地轨道(LEO)进行电信,地球观察,示威者,但对使用Cubesats进行太空探索和狮子座以外的运行的兴趣正在增长。已经启动了一些任务,目的是证明Cubesat在深空(例如Lici-Acube,Marco)等的可行性将在未来几年(例如Apex)启动。然而,必须解决一些挑战,以使方形群体大量允许外太空,而且除其他外,推进子系统是最精致的系统之一。实际上,由于数量和质量的局限性,推进子系统在特定的效果,推力和可靠性方面受到严格要求。在本演讲中,将提出对Cubesats的推进子系统的可能解决方案的分析,并特别注意电推进和冷气。将讨论预设子系统的最新进步及其在深空操作中的适用性。最后,将评估公开挑战和未来的工作。
立方体卫星,或称CubeSat,确实是一种最近越来越受欢迎的纳米卫星,尤其是那些将立方体卫星视为太空计划传统卫星替代品的人。这是因为它们成本低,并且可以使用商用现货组件制造。立方体卫星的最小尺寸为1U(100 × 100 mm2)。1U可轻松升级以用于更大规模的任务(2至12U)。立方体卫星可执行传统卫星的所有基本活动。其电力需求由固定在立方体卫星机身上的电池组和太阳能电池板满足。然而,由于立方体卫星的尺寸比传统卫星小,因此其子系统必须非常小。此外,天线设计是卫星的一个关键组成部分,包括地面站和卫星之间的下行和上行通信。然而,它的尺寸和重量必须与立方体卫星兼容,并必须具有良好的辐射性能[1]。立方体卫星的天线数量最近有所增加,这些卫星工作在 437 MHz(即业余超高频频段),这不仅可以实现无缝上行和下行通信,还可以使一个立方体卫星在网络中相互连接。此外,超高频范围内的立方体卫星天线配置提供平面和非平面几何形状。文献中已经发表了许多适用于在超高频频段工作的立方体卫星的平面和非平面天线配置,包括缝隙天线、偶极天线、单极天线、螺旋天线、八木天线和曲折线天线。贴片天线和缝隙天线是连接轨道立方体卫星与地球上地面站的最佳选择,因为它们体积小、结构紧凑、弹性好、制造简单。它们还具有最小的辐射损耗、较低的色散和简单的输入匹配