分析扩散模型如何学习高斯阶层以外的相关性,我们研究了在前进过程和向后过程下高阶累积物的行为。我们就远期过程的初始数据和属性的分布来介绍矩和累积生成功能的显式表达式。我们在分析上表明,高阶累积物在纯扩散下是在纯扩散下保守的,即在没有漂移的模型中,在正向过程中,因此,正向过程的终点维持了非平凡的相关性。我们证明,由于这些相关性是在得分函数中编码的,因此在从正常先验开始时,在向后过程中也很快学习了高阶累积物。我们在可解决的玩具模型和标量晶格场理论中确认了我们的分析结果。
3 Generalized Cumulants 61 3.1 Introduction and definitions 61 3.2 The fundamental identity for generalized cumulants 62 3.3 Cumulants of homogeneous polynomials 64 3.4 Polynomial transformations 65 3.5 Complementary set partitions 68 3.5.1 Equivalence classes 68 3.5.2 Symbolic computation 69 3.6 Elementary lattice theory 70 3.6.1 Generalities 70 3.6.2分区晶格的m obius功能72 3.6.3包含 - 排斥和二进制晶格74 3.6.4累积和分区晶格75 3.6.5累积的进一步关系77 3.7一些示例77 3.7一些涉及线性模型80 3.8累积空间82 3.9 Gaussian Momments 82 Rysents 85 3.9.19.1.1 issers85。拉普拉斯近似88 3.10.1两人分期膨胀88 3.10.2正式拉普拉斯扩张89 3.11书目注释90 3.12进一步的结果和练习3 92
当系统以独立准粒子为特征并假设“单激发”近似时,我们使用绝热微扰理论研究了量子相变过程中淬灭期间所做功的统计数据。结果表明,所有功的累积量都表现出类似于平均缺陷密度的 Kibble-Zurek 标度的通用标度行为。考虑了两种变换:两个有间隙相之间的淬灭,其中临界点穿过,以及在临界点附近结束的淬灭。与缺陷密度的标度行为相反,这两种淬灭的功累积量的标度行为在质量上有所不同。然而,在这两种情况下,相应的指数都完全由系统的维度和转变的临界指数决定,就像在传统的 Kibble-Zurek 机制 (KZM) 中一样。因此,我们的研究通过揭示 KZM 对工作统计的影响,加深了我们对量子相变的非平衡动力学的理解。
摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [4, 5] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型无法重现任何测量到的 h + 和 h − 量。这种不一致表明我们还没有完全理解涨落是如何产生的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 时,一个可能的工具是质子间歇性,它应该遵循 CP 附近的幂律涨落。可以通过研究二阶阶乘矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px, py) 空间中胞元数量的缩放行为来检查(参见参考文献 [6, 7, 8])。对于实验数据,必须用混合事件减去非临界背景。减去后,二阶阶乘矩 Δ F 2 ( M ) 应该根据 M >> 1 的幂律缩放,得到临界
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [5, 6] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型均未重现所测量到的任何 h + 和 h − 量。这种不一致表明我们尚未完全理解引起涨落的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 中,一个可能的工具是质子间歇性,它应该在 CP 附近遵循幂律涨落。可以通过研究二阶阶矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px , py ) 空间中胞元数量的变化来检查(见参考文献 [7, 8, 9])。对于实验数据,必须用混合事件减去非临界背景。减法后,二阶阶矩 ∆ F 2 ( M ) 应根据 M >> 1 的幂律缩放,得到的临界指数 φ 2 与理论预测相当 [10]。图 3 显示了半中心 Ar + Sc 相互作用中 150 A GeV / c 的 ∆ F 2 ( M )。图左侧和右侧之间的差异是所考虑的统计数据。左侧显示 2018 年发布的结果 [11]。这些结果表明 ∆ F 2 为正值,可能与 CP 有关。右侧显示相同的结果,但统计数据更高(208k
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [5, 6] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型均未重现所测量到的任何 h + 和 h − 量。这种不一致表明我们尚未完全理解引起涨落的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 中,一个可能的工具是质子间歇性,它应该在 CP 附近遵循幂律涨落。可以通过研究二阶阶矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px , py ) 空间中胞元数量的变化来检查(见参考文献 [7, 8, 9])。对于实验数据,必须用混合事件减去非临界背景。减法后,二阶阶矩 ∆ F 2 ( M ) 应根据 M >> 1 的幂律缩放,得到的临界指数 φ 2 与理论预测相当 [10]。图 3 显示了半中心 Ar + Sc 相互作用中 150 A GeV / c 的 ∆ F 2 ( M )。图左侧和右侧之间的差异是所考虑的统计数据。左侧显示 2018 年发布的结果 [11]。这些结果表明 ∆ F 2 为正值,可能与 CP 有关。右侧显示相同的结果,但统计数据更高(208k
由于长程相干性,驱动量子系统的纠缠特性可能与平衡情况不同。我们通过研究一个合适的介观传输玩具模型来证实这一观察结果:开放量子对称简单排除过程(QSSEP)。我们推导出稳定状态下不同子系统之间互信息的精确公式,并表明它满足体积定律。令人惊讶的是,QSSEP 纠缠特性仅取决于与其传输特性相关的数据,我们怀疑这种关系可能适用于更一般的介观系统。利用 QSSEP 的自由概率结构,我们通过开发一种新方法从所谓的局部自由累积量中确定随机矩阵子块的特征值谱来获得这些结果——这本身就是一个数学结果,在随机矩阵理论中具有潜在的应用。为了说明该方法,我们展示了如何从局部自由累积量计算满足本征态热化假设 (ETH) 的系统中可观测量的期望值。
