背额前额叶皮层(DMPFC)和海马(HPC)被认为在空间工作记忆和决策网络中扮演着互补的角色,其中HPC的空间信息来自DMPFC中的空间信息,并在DMPFC中介绍了DMPFC中的dmpfc sial sial sial sial sial HPC elsef hpc elsefs the信息。我们同时从啮齿动物DMPFC和HPC中的神经合奏执行了规则切换任务,发现DMPFC和HPC中的合奏同时编码了任务意外事件和其他时间变化的信息。虽然HPC中的合奏过渡以同时表示新的意外事件,因为老鼠更新了其策略,以与新的意外情况一致,但DMPFC集团早些时候过渡。在DMPFC中,其他时间变化信息的神经表示也比HPC更快。我们的结果表明,HPC和DMPFC代表突发事件,同时表示随着时间的变化而变化的其他信息,并且该上下文信息比在DMPFC中更慢地集成到海马表示中。
在竞争性互动中,人类必须灵活地更新对他人意图的信念,以调整自己的选择策略,比如当相信对方可能会利用他们的合作性时。在这里,我们研究人类信念更新过程的神经动力学和因果神经基础。我们使用了一个改良的囚徒困境游戏,其中参与者明确预测同伴的行为,这使我们能够量化预期行为和实际行为之间的预测误差。首先,在 EEG 实验中,我们发现负向预测误差的内侧额叶负性 (MFN) 比正向预测误差更强,这表明这个内侧额叶 ERP 成分可能编码同伴的意外背叛。MFN 还能预测负向预测误差后的后续信念更新。在第二个实验中,我们使用经颅磁刺激 (TMS) 来研究背内侧前额叶皮质 (dmPFC) 是否在意外结果后有因果地实施信念更新。我们的结果表明,dmPFC TMS 削弱了负面预测误差后的信念更新和战略行为调整。总之,我们的研究结果揭示了预测误差在社交决策中的使用时间过程,并表明 dmPFC 在更新他人意图的心理表征方面发挥着至关重要的作用。
摘要及其最近的发展,大型语言模型(LLM)表现出一定程度的心理理论(TOM),这是一种与我们的意识思维有关的复杂认知能力,使我们能够推断他人的信念和观点。虽然人类的TOM能力被认为是源自广泛相互联系的脑网络的神经活性,包括背侧内侧前额叶皮层(DMPFC)神经元的神经活性,但LLM与TOM相似的LLM能力的确切过程仍然很广。在这项研究中,我们从DMPFC神经元中依靠人类TOM的DMPFC神经元中汲取了灵感,并采用了类似的方法来检查LLMS是否表现出可比的特征。令人惊讶的是,我们的分析揭示了两者之间的显着相似之处,因为LLM中隐藏的嵌入(人造神经元)开始对真实或虚假的belief试验表现出很大的响应能力,这表明它们代表他人的观点的能力。这些人工嵌入响应与LLMS在TOM任务中的性能密切相关,该功能取决于模型的大小。此外,可以使用整个嵌入来准确地解码对方的信念,这表明在人群水平上存在嵌入的TOM能力。一起,我们的发现揭示了LLMS嵌入的新兴特性,该特性对TOM特征的响应修改了其活动,提供了人工模型与人脑中神经元之间平行的初步证据。
青春期的发展是青春期冒险行为增加的潜在触发因素。在这里,我们试图使用功能性磁共振成像(fMRI)在男性危险决策过程中进行青春期与神经激活之间的关系。12.5 - 14.5岁的47名男性完成了一项功能磁共振成像的冒险任务(BART),并报告了使用自我报告调查表的倾向,他们倾向于使用自我报告调查表进行危险决策。 通过自我报告的青春期状态和唾液睾丸激素水平评估青春期。 睾丸激素的浓度,而不是身体的青春期状态,与自我报告的风险采取行为呈正相关,而两者都不与巴特的性能相关。 在整个样本中,参与者在与试验中做出了安全的决定相比,在做出安全的选择或危险决定不成功时,他们在试验中做出了成功的风险决策时,对双侧核的激活和正确的尾声更为激活。 在不成功的对照试验中比较了不成功的风险决策试验,青春期阶段与大脑激活之间存在负相关性。 在青春期发育的较低阶段的在左岛,右扣带扣皮皮质,背侧前额叶皮层(DMPFC),右pramen和右甲状腺皮质(OFC)相对于在批准和批准的情况下,他们会在计算机上进行比较时,他们会逐步批准了一定的计算机时,右扣皮皮层,右扣皮皮层(DMPFC),右pramen和右甲状腺皮质(OFC)的激活增加增加。12.5 - 14.5岁的47名男性完成了一项功能磁共振成像的冒险任务(BART),并报告了使用自我报告调查表的倾向,他们倾向于使用自我报告调查表进行危险决策。青春期。睾丸激素的浓度,而不是身体的青春期状态,与自我报告的风险采取行为呈正相关,而两者都不与巴特的性能相关。在整个样本中,参与者在与试验中做出了安全的决定相比,在做出安全的选择或危险决定不成功时,他们在试验中做出了成功的风险决策时,对双侧核的激活和正确的尾声更为激活。在不成功的对照试验中比较了不成功的风险决策试验,青春期阶段与大脑激活之间存在负相关性。在青春期发育的较低阶段的在左岛,右扣带扣皮皮质,背侧前额叶皮层(DMPFC),右pramen和右甲状腺皮质(OFC)相对于在批准和批准的情况下,他们会在计算机上进行比较时,他们会逐步批准了一定的计算机时,右扣皮皮层,右扣皮皮层(DMPFC),右pramen和右甲状腺皮质(OFC)的激活增加增加。在左岛,右扣带扣皮皮质,背侧前额叶皮层(DMPFC),右pramen和右甲状腺皮质(OFC)相对于在批准和批准的情况下,他们会在计算机上进行比较时,他们会逐步批准了一定的计算机时,右扣皮皮层,右扣皮皮层(DMPFC),右pramen和右甲状腺皮质(OFC)的激活增加增加。与成功风险试验相比,在包括DMPFC,右时间和额叶皮层,右颞和右海皮,右海马和枕皮层在内的大脑区域的激活也更大。这些结果表明,在处理风险决策的结果时,关键大脑区域内神经激活的转变可能会降低其对负面反馈的敏感性,进而有助于增加青少年风险行为的行为。
血清素能功能障碍与重度抑郁症(MDD)有关,但这种关系的机制仍然难以捉摸。5-羟色胺1A(5-HT 1A)自身受体调节脑部羟色胺神经元的触发,并定位为对负面情绪产生大规模影响。在这里,我们研究了Raphe 5-HT 1A结合与负面情绪的脑网络动态之间的关系。22名健康志愿者(HV)和27名无药物参与者使用[11 C] CUMI-101(CUMI)进行了PET,以量化中脑raphe nuclei和FMRI扫描中的5-HT 1A结合,并在情绪负面的情况下进行扫描。使用多元动力学系统模型在fMRI数据中估计了对负面情绪有效的因果关系。在观看阴影下,MDD受试者表现出对杏仁核,基底ganglia,thalamus,轨道额叶皮层,下额回和背膜前额叶皮层的显着海马抑制作用(IFG,DMPFC)。MDD相关的连通性与Raphe 5-HT 1A结合无关。然而,杏仁核,丘脑,IFG和DMPFC的海马抑制更大,与海马5-HT 1A结合相关。
图 1 性格拟人化和心智理论网络激活。(a)用拟人化个体差异问卷测量的样本性格拟人化,(b)在观看动画电影时,与观看引发疼痛感知的场景相比,在观察引发心理化的场景时,心智理论网络的六个区域的激活情况,性格拟人化和活动之间没有明确的关系(c)在心智理论网络中和(d)在各个区域内(二次预测因子为红色,线性预测因子为蓝色)。指数在(c)和(d)中居中并按比例缩放。dmpfc,背内侧前额皮质;mmpfc,中内侧前额皮质;prec,楔前叶;rtpj 和 ltpj,右侧和左侧颞顶交界处;vmpfc,腹内侧前额皮质
超重和肥胖已成为国际公共卫生问题,因此迫切需要实施有效的干预措施来预防这些令人担忧的健康问题。与千篇一律的信息(非定制)相比,设计个性化(定制)饮食信息已成为减少不健康饮食行为最有效的工具之一。然而,需要更多的研究来全面了解定制营养信息减少不健康饮食行为的潜在机制。据我们所知,我们的研究可能是第一个使用神经成像,即功能性磁共振成像(fMRI)的研究,旨在评估定制和非定制营养信息的神经基础,并评估这些神经反应如何预测一个月后收到定制营养信息后不健康食物摄入量的减少。为了实现这一目标,30 名参与者在阅读定制和非定制营养信息时接受了扫描。随后,一个月内,他们接受了鼓励健康饮食摄入的定制干预措施。神经学研究结果表明,与非定制的沟通方式相比,定制的信息会激发与自我相关的大脑网络,例如楔前叶、颞中回、海马体、下眶额皮质 (OBC)、背内侧前额皮质 (dMPFC) 和角回。有趣的是,在这些与自我相关的大脑区域中,dMPFC、OFC、角回和海马体预测,在为期一个月的定制干预措施停止不健康饮食后,不健康食物摄入量会减少。这些结果可能对临床医生、从业者和/或政策制定者具有启示意义,他们应该付出巨大努力,创建个性化的活动,重点关注目标人群在健康饮食方面感知到的需求、目标和驱动力,以减少超重问题。因此,这项研究向前迈出了一步,表明定制营养信息的神经反应与现实生活中健康饮食行为的变化之间存在直接关联。
图 3 与心理工作量相关的大脑激活和停用。(a)统计参数图说明了 TNT 中心理工作量的主要影响。彩色条表示激活高度的 t 值(+ 10 至 � 10)。展示了在 2-back 与 0-back 期间激活增加(红色)和减少(蓝色)的皮质区域。为了便于说明,地图的阈值为 p < .001 FWE 校正。激活叠加在受试者的解剖 T1 扫描上,并标准化为标准 MNI 空间。ACC,前扣带皮层;PCC,后扣带皮层;DLPFC,背外侧前额叶皮层;DMPFC,背内侧前额叶皮层;PC,顶叶皮层(顶上回和顶下小叶);SMA,辅助运动区; VMPFC,腹内侧前额皮质。(b)条形图显示相对于静止条件,0-back 和 2-back 条件下峰值体素处 BOLD 信号增加/减少的百分比。标明了 MNI 坐标。该百分比是针对每个任务难度级别的所有区块(即安全和威胁)计算的。误差线为 SEM。浅灰色 = 0-back,中灰色 = 2-back
图 3 与心理工作量相关的大脑激活和停用。(a)统计参数图说明了 TNT 中心理工作量的主要影响。彩色条表示激活高度的 t 值(+ 10 至 � 10)。展示了在 2-back 与 0-back 期间激活增加(红色)和减少(蓝色)的皮质区域。为了便于说明,地图的阈值为 p < .001 FWE 校正。激活叠加在受试者的解剖 T1 扫描上,并标准化为标准 MNI 空间。ACC,前扣带皮层;PCC,后扣带皮层;DLPFC,背外侧前额叶皮层;DMPFC,背内侧前额叶皮层;PC,顶叶皮层(顶上回和顶下小叶);SMA,辅助运动区; VMPFC,腹内侧前额皮质。(b)条形图显示相对于静止条件,0-back 和 2-back 条件下峰值体素处 BOLD 信号增加/减少的百分比。标明了 MNI 坐标。该百分比是针对每个任务难度级别的所有区块(即安全和威胁)计算的。误差线为 SEM。浅灰色 = 0-back,中灰色 = 2-back
图3基于GMV的预测模型的贡献区域。(a)基于GMV的预测模型确定了13个贡献区域(即,利益区域,ROI,ROIS),绘制了群集大小为体素数。颜色表示不同的大脑网络模块。(b)模块化分析确定了相同颜色所示的ROI的三个稳定模块(默认模式网络,DMN,蓝色;中央执行网络,CEN,黄色;和动作感知网络,APN,RED)在连通性密度含量下,范围为0.26至0.50,增量为0.01。(c)连通性密度为0.40的三个网络模块的弹簧状布局显示了每对节点之间的欧几里得距离,反映了图理论距离和线的厚度,反映了边缘的连接强度。(d)连通性密度为0.40的功能连通性矩阵(通过模块对ROI进行排序)显示边缘内部比模块之间更强的边缘强度。(e)与每个模块相关的前四个心理主题显示功能解码曲线的对数比值比。ifg,下额回(腹外侧前额叶皮层,VLPFC); MFG,中部额回(背侧前额叶皮层,DLPFC); mog,中枕回; prcg,前中央回; POCG,中心后回; precuneus; SFG,上额回(背部前额叶皮层,DMPFC); SMG;超边缘回; SPL,上顶叶; STG,上级颞回