DNA 甲基化 (DNAme) 是一种关键的表观遗传标记,可调节维持整体基因组稳定性的关键生物过程。鉴于其多效性功能,对 DNAme 动力学的研究至关重要,但目前可用的干扰 DNAme 的工具存在局限性和严重的细胞毒性副作用。在这里,我们提出了允许通过 DNMT1 耗竭进行可诱导和可逆 DNAme 调节的细胞模型。通过动态评估通过细胞分裂诱导的被动去甲基化的全基因组和位点特异性效应,我们揭示了 DNMT1 和 DNMT3B 之间的协同活动,但不是 DNMT3A,以维持和控制 DNAme。我们表明,DNAme 的逐渐丧失伴随着异染色质、区室化和外周定位的逐渐和可逆变化。DNA 甲基化丧失与由于 G1 停滞而导致的细胞适应性逐渐降低相吻合,并伴有轻微的有丝分裂失败。总之,该系统可以进行具有精细时间分辨率的 DNMT 和 DNA 甲基化研究,这可能有助于揭示 DNAme 功能障碍与人类疾病之间的病因联系。
DNA甲基化(DNAME)是一种表观遗传标记,其中包括CPG岛中胞质的修饰(5MC)。除了调节基因表达,烙印和沉默的寄生DNA元素的表征良好的作用外,DNAME的不正调还与多种疾病有关。有证据表明,dname不是独立的表观遗传标记,而是与组蛋白的翻译后修饰(PTM)密切相关。但是,检查5MC和PTM之间的直接关系受到无法建立直接机械链接的单独测定的相关分析。此外,测量5MC的传统方法依赖于DNA的苛刻的Bisulfite化学对话,DNA引入了DNA断裂和全身偏见。为了解决这些局限性,我们开发了一种靶向的酶甲基化测序(TEM-SEQ)方法,这是一种超敏感的多摩变基因组映射技术,可在表位定义的染色质特征下提供高分辨率的DNAME谱。重要的是,该测定法可以检查5MC与组蛋白PTM和/或染色质蛋白(CHAPS)之间的直接分子联系。
摘要简介DNA甲基化(DNAME)在一般人群中与2型糖尿病和血红蛋白A1C(HBA1C)的横截面相关。但是,目前在1型糖尿病中的纵向数据和数据非常有限。因此,我们在观察性1型糖尿病队列中进行了一项表观基因组范围的关联研究(EWA),以识别与与并发和未来的HBA1CS以及其他临床风险因素相关的DNAME的基因座,并在28年内。在683 597 CPG中的研究设计和方法在匹兹堡的糖尿病并发症的流行病学研究(<17年)1型糖尿病(n = 411)中分析了683 597 CpGs的全血液DNAME。使用针对糖尿病持续时间,性别,吸烟的包装,估计的细胞类型组成变量和技术/批处理协变量调整的线性模型以及技术/批处理协变量,对dname beta值和并发HBA1C进行了ewas。使用混合模型进行了随后重复的HBA1C测量的纵向EWA。我们进一步鉴定出对重要CPG的甲基化定量性状基因座(MEQTL),并进行了孟德尔随机化。CG19693031(CHR 1,硫氧还蛋白相互作用蛋白(TXNIP))和CG21534330(ChR 17,酪蛋白激酶1同工型Delta)的结果均与同时相关HBA1C显着相关。在纵向分析中,CG19693031的低甲基化在28年内与HBA1C持续更高的HBA1C相关,并且甘油三酸酯,脉搏率和白蛋白:肌酐比率(ACR)与HBA1C无关。我们在SLC2A1/SLC2A1-AS1中进一步确定了34个MEQTL,与CG19693031 DNAME显着相关。结论我们的结果扩展了先前的发现,即通过证明长期持续的关联持续存在,TXNIP低甲基化与1型糖尿病中的血糖控制有关。此外,与甘油三酸酯,脉搏率和ACR的关联表明TXNIP DNAME可以在血管损伤中发挥作用,而与HBA1C无关。这些发现通过其在SLC2A1 /葡萄糖转运蛋白1介导的葡萄糖调节中的作用来增强针对TXNIP的干预措施,以改善1型糖尿病的血糖控制。
表观遗传改变是衰老的主要标志。在哺乳动物中,与年龄相关的表观遗传变化改变了基因表达谱,破坏细胞稳态和生理功能,因此会促进衰老。尚不清楚衰老是否也是由无脊椎动物的表观遗传机制驱动的。在这里,我们使用了药理学低甲基化剂(RG108)来评估DNA甲基化(DNAME)对昆虫寿命的影响 - 大黄蜂BOMBUS TERNSTERIS。RG108将平均寿命扩大43%,并诱导涉及衰老标志的基因的差异甲基化,包括DNA损伤修复和染色质器官。此外,处理后的寿命基因SIRT1过表达。功能实验表明SIRT1蛋白活性与寿命呈正相关。总体而言,我们的研究表明,表观遗传机制是脊椎动物和无脊椎动物中寿命的保守调节剂,并提供了有关DNAME如何参与昆虫衰老过程的新见解。
基因转录受组蛋白转化后修饰(PTM),染色质蛋白(CAPS)和DNA甲基化(DNAME)之间的复杂相互作用的调节。绘制其基因组位置并检查这些染色质元素之间的关系是一种强大的疾病机制方法,从而可以发现新型的生物标志物和治疗剂。领先的表观基因组映射技术(例如,Chip-Seq,Cut&Run)依靠DNA碎片来隔离感兴趣的区域以在短读平台上进行测序(例如Illumina)。这种策略导致有关周围DNA的上下文信息的实质性丧失,从而排除了单个DNA分子上多个同时出现的表观基因组特征的鉴定。相比之下,长阅读测序(LRS)平台能够从单个分子(通常> 10KB)进行很长的读取,从而使单个分子上的特征之间的关系可以用于解决混合群体内的异质性。在这里,我们报告了一种强大的多摩变方法,该方法利用LRS在单个测定中同时介绍了组蛋白PTMS(或CAPS),DNAME和父母单倍型。
由染色质结合因子(包括转录因子(TFS)和染色质重塑剂)策划的调节控制是负责维持细胞身份,执行细胞功能并响应环境刺激的基因表达程序的基础。这些DNA:蛋白质相互作用是通过表观遗传特征1引导的,例如组蛋白修饰和DNA甲基化(DNAME),它们建立染色质景观,调节特定因子的结合,从而根据细胞的需求雕刻功能基因组。重要的是,表观遗传失调与疾病,癌症和衰老的细胞功能障碍有关,在该疾病,癌和衰老中,异常染色质景观会改变TFS 2的结合景观,从而改变了细胞3的正常生物学过程。因此,了解TF跨不同
摘要:我们提出的概念旨在寻找新的靶结构,以对抗尚未满足医疗需求的癌症。不幸的是,这仍然适用于大多数临床上最相关的肿瘤实体,例如肝癌、胰腺癌和许多其他肿瘤。当前的靶结构几乎都属于由肿瘤特异性基因改变引起的致癌蛋白类,例如激活突变、基因融合或基因扩增,通常被称为癌症“驱动改变”或简称为“驱动因素”。然而,恢复肿瘤抑制基因 (TSG) 失去的功能也可能是治疗癌症的有效方法。TSG 衍生的蛋白质通常被认为是细胞对抗致癌特性的控制系统;因此,它们代表了“生命之车”中的刹车。到目前为止,通过基因疗法恢复这些肿瘤缺陷刹车尚未成功,只有少数例外。可以假设大多数 TSG 不是通过基因改变(1 类 TSG)失活的,而是通过表观遗传沉默(2 类 TSG 或简称“C2TSG”)失活的。癌症治疗中 C2TSG 的重新激活正在通过使用 DNA 去甲基化剂和组蛋白去乙酰化酶抑制剂来解决,这些抑制剂作用于整个癌细胞基因组。这些表观遗传疗法都没有特别成功,可能是因为它们是“散弹枪”方法,虽然作用于 C2TSG,但也可能重新激活基因组中表观遗传沉默的致癌序列。因此,需要新的策略来利用 C2TSG 的治疗潜力,C2TSG 最近也被命名为 DNA 甲基化癌症驱动基因或“DNAme 驱动”。在这里,我们提出了一种新的转化和治疗方法的概念,该方法侧重于高度与疾病相关的 C2TSG/DNAme 驱动编码的蛋白质的表型模仿(“模仿”)。关于 C2TSG 的分子知识被用于两种互补的方法,它们具有共同的定义模拟药物的转化概念:首先,提出了一种概念,即如何开发截短和/或基因工程化的 C2TSG 蛋白(仅由具有明确肿瘤抑制功能的结构域组成)作为生物制剂。其次,描述了一种识别可以模拟癌细胞中丢失的 C2TSG 蛋白作用的小分子的方法。这两种方法都应该为抗癌药物开辟一个新的、以前未开发的发现空间。