1引言有效的流程计划是网络社区中的一个重要且研究的问题[3,5,7,12,13,23,24,27]。使用启发式方法,平衡机制和网络流量的截止日期,在调度流方面有很多工作。传统上,实施流程计划有两种广泛的方法。首先是集中式的AP PROACH,其中中央控制器从所有流中收集网络数字并计算所需的流程度[3,12,13,27,49]。第二个是在分布式的方式借助数据包或开关支持[5,7,23,44],以分布式的方式进行近似启发式方法,例如最短剩余的处理时间(SRPT)。大多数流程调度方法都集中在传统的数据中心流量上,这是爆发且短[9]。此外,传统数据中心流的到达通常是独立且无法预测的。今天,随着对基于AI的服务的需求不断增长,数据中心中的深度神经网络(DNN)培训和良好的流量已成倍增加。与传统的数据中心工作负载不同,DNN培训和微调作业具有定期的流量模式,在该模式中,每个训练迭代的开始时间都取决于之前迭代的完成,从而对流量到达时间产生依赖性[53,59,64]。我们证明,基于剩余的处理时间(即Pfabric [5],PDQ [23]和PIAS [7])的调度技术并不总是最适合安排DNN作业的最佳选择。直觉上,这是因为此类技术根据网络中当前流的状态做出本地调度决策,而无需考虑定期作业的流量到达模式。在DNN工作负载中,这种效果变得不利,其中在一个迭代中完成流量会影响随后迭代的完成时间。最近的研究,例如Muri [64]和Cassini [52,53],已经证明,对于DNN工作负载,促进交流沟通需求的时间表达到了时间表网络计划。他们将交织的想法定义为一个DNN作业的通信阶段(高网络授权)与计算阶段(低网络
深神经网络(DNNS)缺乏对概率图形模型(PGM)的精确语义和确定性的概率解释。在本文中,我们通过构造与神经网络完全相对应的无限树结构的PGM提出了创新的解决方案。我们的研究表明,在正向传播过程中,DNN确实执行了PGM推断的近似值,在这种替代PGM结构中是精确的。我们的研究不仅补充了将神经网络描述为内核机器或无限大小的高斯过程的现有研究,而且还阐明了DNNS对PGMS的精确推断进行更直接的近似。潜在的好处包括改进的教学法和DNN的解释以及可以合并PGM和DNN优势的算法。
为确保飞机结构的飞行安全,有必要使用目视和无损检测 (NDI) 方法进行定期维护。在本文中,我们提出了一种使用深度神经网络 (DNN) 的基于图像的飞机缺陷自动检测方法。据我们所知,这是首次使用 DNN 进行飞机缺陷检测。我们对最先进的特征描述符进行了全面评估,并表明使用 vgg-f DNN 作为特征提取器与线性 SVM 分类器可实现最佳性能。为了减少处理时间,我们建议应用 SURF 关键点检测器来识别缺陷补丁候选。我们的实验结果表明,对于笔记本电脑上的高分辨率(20 兆像素)图像,我们可以在大约 15 秒的处理时间内实现超过 96% 的准确率。
在移动设备上处理视觉数据有许多应用,例如应急响应和跟踪。最先进的计算机视觉技术依赖于大型深度神经网络 (DNN),而这些网络通常耗电量太大,无法部署在资源受限的边缘设备上。许多技术通过牺牲准确性来提高 DNN 的效率。然而,这些技术的准确性和效率无法适应具有不同硬件约束和准确性要求的各种边缘应用。本文表明,一种称为分层 DNN 的最新高效树型 DNN 架构可以转换为基于有向无环图 (DAG) 的架构,以提供可调的准确性-效率权衡选项。我们提出了一种系统方法来识别必须添加的连接以将树转换为 DAG 来提高准确性。我们在流行的边缘设备上进行了实验,并表明增加 DAG 的连接性可以将准确性提高到现有高精度技术的 1% 以内。我们的方法比高精度技术所需的内存减少了 93%,能耗减少了 43%,操作减少了 49%,从而提供了更高的精度和效率。
近年来,检测变形人脸图像的任务变得非常重要,以确保基于人脸图像的自动验证系统(例如自动边境控制门)的安全性。基于深度神经网络 (DNN) 的检测方法已被证明非常适合此目的。然而,它们在决策过程中并不透明,而且不清楚它们如何区分真实人脸图像和变形人脸图像。这对于旨在协助人类操作员的系统尤其重要,因为人类操作员应该能够理解其中的推理。在本文中,我们解决了这个问题,并提出了聚焦分层相关性传播 (FLRP)。该框架在精确的像素级别向人类检查员解释深度神经网络使用哪些图像区域来区分真实人脸图像和变形人脸图像。此外,我们提出了另一个框架来客观地分析我们方法的质量,并将 FLRP 与其他 DNN 可解释性方法进行比较。该评估框架基于移除检测到的伪影并分析这些变化对 DNN 决策的影响。特别是,如果 DNN 的决策不确定甚至不正确,与其他方法相比,FLRP 在突出显示可见伪影方面表现得更好。
摘要。预测性业务流程监控 (PBPM) 是一类旨在预测运行轨迹中的行为(例如下一个活动)的技术。PBPM 技术旨在通过向流程分析师提供预测来提高流程性能,支持他们进行决策。然而,PBPM 技术的有限预测质量被认为是在实践中建立此类技术的主要障碍。通过使用深度神经网络 (DNN),可以提高该技术的预测质量,以完成诸如下一个活动预测之类的任务。虽然 DNN 实现了良好的预测质量,但由于其学习表示的分层方法,它们仍然缺乏可理解性。尽管如此,流程分析师需要理解预测的原因,以确定可能影响决策的干预机制,以确保流程性能。在本文中,我们提出了 XNAP,这是第一个可解释的基于 DNN 的 PBPM 技术,用于下一个活动预测。 XNAP 集成了可解释人工智能领域的分层相关性传播方法,通过提供活动的相关性值,使长短期记忆 DNN 的预测可解释。我们通过两个现实生活中的事件日志展示了我们的方法的优势。
深层神经网络(DNNS)在众多领域取得了巨大的成功,并且它们在与PDE相关的问题上的应用正在迅速发展。本文使用DNN将学习Lipschitz操作员在Banach空间上使用DNN的概括错误提供了估计,并将其应用于各种PDE解决方案操作员。目标是指定DNN宽度,深度以及保证某个测试错误所需的训练样本数量。在对数据分布或操作员结构的轻度假设下,我们的分析表明,深层操作员学习可以放松地依赖PDE的离散化解决方案,从而减少许多与PDE相关的问题的诅咒,包括椭圆方程,抛物线方程,抛物线方程和汉堡方程。我们的结果还适用于在操作员学习中有关离散化侵权的见解。
摘要 — 本研究重点研究了在 FPGA 片上系统 (SoC) 上加速的深度神经网络 (DNN) 的时间可预测执行。本文考虑了 Xilinx 的现代 DPU 加速器。针对 Zynq Ultrascale+ 平台进行了广泛的分析活动,以研究 DPU 在加速一组用于高级驾驶辅助系统 (ADAS) 的最先进的 DNN 时的执行行为。基于分析,提出了一个执行模型,然后用于得出响应时间分析。还提出了一个名为 DICTAT 的定制 FPGA 模块,以提高 DNN 加速的可预测性并收紧分析界限。最后,基于分析界限和目标平台的测量结果,提供了一组丰富的实验结果,以评估所提出的方法在 ADAS 应用上的有效性和性能。
理解视觉系统的感觉转换的关键挑战是获得一个高度预测的模型,该模型将自然图像映射到神经反应。深神经网络(DNNS)为这种模型提供了有前途的候选人。但是,由于实验记录时间受到严重限制,DNN要求比神经科学家可以收集的训练数据多。这促使我们找到了用尽可能少的培训数据训练高度预测的DNN的图像。,我们提出了自然图像的高对比度,双核版本(Termed Gaudy图像),以有效地训练DNNS,以预测高阶的视觉皮质响应。在对真实神经数据的仿真实验和分析中,我们发现具有艳丽图像的训练DNN大大减少了准确预测对自然图像的响应所需的训练图像的数量。我们还发现,在训练之前选择的谨慎图像优于通过主动学习算法在训练期间选择的图像。因此,谨慎的图像过多地强调了自然图像的特征,这对于有效地训练DNN最重要。我们认为,艳丽的图像将有助于对视觉皮质神经元的建模,这有可能打开有关视觉处理的新科学问题。
在集群上运行 DNN 作业:容器、资源分配、调度论文和系统:KubeFlow、OpenPAI、Gandiva、HiveD