虽然基于Piggybac转座子的转基因被广泛用于各种新兴模型生物,但其在黄油环和飞蛾中相对较低的换位速率却阻碍了其用于鳞翅目常规遗传转化的使用。在这里,我们测试了密码子优化的多活跃pigbac转座酶(hypbase)mRNA形式的适用性,以将转基因盒递送和整合到储藏室的基因组中。与供体质粒共同注射,成功整合了1.5 - 4.4 kb的表达盒,驱动荧光标记物EGFP EGFP,DSRED或EYFP与3XP3启动子中的眼睛和Glia中的EYFP。从72小时的胚胎和幼虫,pupae和携带隐性白眼突变的成年人中,可以从72小时的胚胎中检测到转基因在G 0中的体细胞整合和表达。总体而言,注射卵中有2.5%存活到具有镶嵌荧光的成年成年人中。随后的荧光G 0创建者脱离了3xp3 :: eGFP和3xp3 :: eyfp的单插入副本,并产生了稳定的同源线。表达3xp3 :: DSRED的G 0创始人的一小部分G 0的随机跨跨跨跨,产生了一个稳定的转基因线,以一个以上的转基因插入位点分离。我们讨论了如何使用hypbase在Plodia和其他飞蛾中产生稳定的转基因资源。
烟草变换。 div>生成转基因线T0。 div>该试验的烟草线对象是由K326商业品种的烟草植物的CRISPR/CAS9技术产生的。 div>为此,由烟草植物的农杆菌根源介导的,具有相应的转化载体,其中包含DSRED和NPTII蛋白的转录单位(选择标记物)(选择标记),CAS9蛋白的转录单位,以及用于辅助辅助的转录单元的转录单位,以辅助构图。 div>
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。
Figure 1: Flow diagram outlining factors contributing to increased generation of fast fashion associated garment waste (Gupta et al., 2022; Niinimäki et al., 2020; Sandin & Peters, 2018)......................................................................................................................................... 1 Figure 2: Stick representations of chromophore orientations.Chromoprotein SGBP(Cyan)(反式非链球菌)和荧光蛋白EQFP611(粉红色)(trans coplanar)和dsred(绿色)(CIS Coplanar dsred)。(Chiang et al., 2015)......................................................................................................................................... 5 Figure 3: Topologies related to type A, B and C CBMs.芳香族氨基酸产生CH-π相互作用的蓝色可视化,蓝色键 - 氨基酸地层以紫色可视化。Carbohydrate substrates visualised in green (Armenta et al., 2017.......................................................................................................................................... 8 Figure.使用Bradford试剂或灭绝系数(Ext COE)确定的结果。pH 7 bradford(a),pH 7寿命系数(b),pH 5.5 bradford(c),pH 5.5影合系数(d)。数据以多次比较的混合作用分析表示为生物重复物的平均值和标准偏差。*Significantly different (p < 0.05).........................................................................................................................................36 Figure 10: Percentage binding for each protein overvaried pH, temperature and incubation time.4:以下质粒的地图:PET-CHR AB(A),PET-CHR AB.CL(B),PET-CHR AB.CH2(C),PET-CHR SP(D),PET-CHR SP.CL(E),Petchr UM(f) (H)...........................................................................................................................................24 Figure 5: Absorbance spectra from 300 to 700 nm between pH 3 to 9 for the following proteins: AB (A), AB.Cl (B), AB.Ch2 (C), SP (D), SP.Cl(E), UM (F), UM.Cl (G) and UM.Ch2 (H)...........................................................................................................................................28 Figure 6: Absorbance spectra from 300 to 700 nm in 25 °C – 25 °C (in 5 °C increments) for the following proteins: (A) AeBue (AB), (B) AB.Cl, (C) AB.Ch2, (D) SP, (E) SP.Cl , (F) Ultramarine, (G) UM.Cl., (H) UM.Ch2...................................................................................................................................31 Figure 7: Protein standards and corresponding elution volume for Superdex 200 10/300 column.................................................................................................................................... 33 Figure 9在pH 5.5或7时,每种蛋白质的约束百分比结合百分比。室温过夜(RTON)(粉红色),室温超过2小时(RT2H)(蓝色),4°C过夜(4CON)(绿色)(绿色),4°C,超过2小时(4C2H)(紫色)。使用Bradford试剂(BRAD)或灭绝系数(Ext COE)确定的结果。UM.CH2(A - D),UM.CL(E - H)的结果。 数据以生物重复的平均值和标准偏差表示,并使用双向方差分析进行了多次比较。UM.CH2(A - D),UM.CL(E - H)的结果。数据以生物重复的平均值和标准偏差表示,并使用双向方差分析进行了多次比较。*Significantly different (p < 0.05).........................................................................................................................................40
摘要:基于 CRISPR(成簇的规律间隔的短回文重复序列)的技术是用于定点基因组修饰的强大、可编程工具。在成功改造并有效使用 CRISPR-Cas9 进行甲基营养酵母 Komagataella phaffii 的基因组工程后,人们希望有更多可用的核酸内切酶来增加实验灵活性,并在由于第三方的知识产权 (IPR) 而对工业研究有特定法律限制的情况下提供替代方案。MAD7 是一种工程化的 2 类 V 型 Cas 核酸酶,被推广为学术和工业研究的免版税替代品,由 Inscripta(美国加利福尼亚州普莱森顿)开发。本研究首次将CRISPR-MAD7用于K. phaffii基因组编辑,对编码甘油激酶1(GUT1)、红色荧光蛋白(DsRed)和zeocin抗性基因(Sh ble)的三个靶基因均获得了较高的基因编辑率(高达90%)。此外,还通过靶向K. phaffii中的259个激酶基因,系统地比较了CRISPR-MAD7和CRISPR-Cas9系统的基因组编辑效率。在这次大范围的测试中,与应用的CRISPR-MAD7工具箱(约23%)相比,CRISPR-Cas9具有更高的基因组编辑率,约为65%。
图 1. 基于 Cas12a 的基因驱动显示出受温度调节的超孟德尔遗传率。(a)CopyCat 基因驱动系统示意图。DsRed 标记的 Cas12a 是一种静态转基因,它通过等位基因转换提供复制 GFP 标记的 CopyCat 元素的核酸酶,而等位基因转换由周围的同源臂驱动。(b)表达 Cas12a 的雄性与携带黑檀木 CopyCat 构建体(e1 或 e4 基因驱动)的处女雌性杂交方案。收集的处女雌性(Cas12a-dsRed + 基因驱动-GFP)与黑檀木突变雄性杂交,通过筛选 F2 后代中的 GFP 标记来评估种系传递率。深灰色半箭头表示雄性 Y 染色体。F1 雌性中的绿色三角形表示潜在的基因驱动复制到野生型染色体上。 (c) 通过对 GFP 标记的乌木 CopyCat 构建体的 F2 后代进行表型评分,评估 F1 雌性生殖系中的基因驱动活性。遗传率测量值与平均遗传率 (%)(也以黑条表示)和进行的 F1 杂交次数 (n) 一起报告在图表顶部。
culex quinquefasciatus说是在世界的热带和亚热带地区分布的蚊子。这是一种夜间活性的,机会性的血液源,媒介是许多动物和人类疾病,包括西尼罗河病毒和禽类疟疾。当前向量控制方法(例如物理/化学)越来越无效;杀虫剂的使用还对人类和生态系统健康构成危害。基因组编辑的进步允许开发遗传昆虫控制方法,这些方法是特异性物种特异性的,从理论上讲,非常有效。crispr/cas9是一种细菌衍生的可编程基因编辑工具,可在一系列物种中起作用。我们描述了Quinquefasciatus中同源性修复的第一个成功的种系基因基因概括。使用CRISPR/CAS9,我们将编码荧光蛋白荧光团(HR5/IE1 -DSRED,CQ7SK -SGRNA)编码的SGRNA表达盒和标记基因集成到kynurenine 3 − 3-单核酶(KMO)基因中。我们达到的最小转化率为2.8%,类似于其他蚊子物种的速率。确定了预期基因座的精确敲门in。插入纯合子在早期幼虫中表现出白眼表型,并且通过化合物表现出隐性致命表型。这项工作为工程C. Quinquefasciatus提供了一种有效的方法,为该向量开发遗传控制工具提供了一种新工具。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。