人类学习中有意识意识的必要性一直是心理学和神经科学的长期话题。先前对非意识联想学习的研究受到潜意识刺激的信噪比低的限制,并且证据仍然存在争议,包括不重复复制。使用功能性MRI解码神经反馈,我们指导来自男女的参与者产生类似于视觉感知现实世界实体(例如狗)时观察到的神经模式。重要的是,参与者仍未意识到这些模式所代表的实际内容。我们利用一种联想的十NEF方法将感知含义(例如狗)浸入日本的希拉加纳角色中,这些角色对我们的参与者没有固有的含义,绕开了角色与狗的概念之间的有意识联系。尽管缺乏对神经反馈目标的认识,但参与者还是成功地学会了激活双边锻造形式的目标感知表示。在视觉搜索任务中评估了我们培训的行为意义。ecnef和对照参与者搜索了由Decnef培训期间使用的Hiragana预先塑造的狗或剪刀目标或对照Hiragana。Decnef Hiragana并未对其相关目标进行搜索,但令人惊讶的是,参与者在寻找目标感知类别时受到了损害。因此,有意识的意识可能起作用,以支持高阶关联学习。这项工作还提供了关于神经代表性漂移的ectnef效应的说明。同时,在现有神经表示中的重新学习,修改或可塑性的较低级别形式可能会在不知不觉中发生,并且在原始培训环境之外会产生行为后果。
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
这项研究探讨了通过功能磁共振成像(fMRI)应用的扩散模型和增强学习对解码神经反性(DECNEF)建模的应用。我们的方法论,降级差异策略优化(DDPO),整合了通过增强学习训练的扩散模型,以导航大脑活动变化的复杂动态。使用预先现有的Decnef数据集,我们实施了策略梯度方法,以迭代地完善扩散模型,旨在产生神经(voxel)活动的目标模式。我们的结果证明了这种方法对实现目标脑状态的策略进行建模的潜力,为研究神经反馈的机制及其对基础科学研究的意义及其对基础科学研究的影响和进行更有效的神经反馈实验提供了基础。