在数字化时代,手写文档识别具有多种应用,例如历史信息保存,邮政地址识别等。对无价文化宝藏的保护和分析在很大程度上取决于历史文档中手写的数字字符串识别。认可的主要挑战是写作风格的变化,噪声,扭曲和有限的数据。本文提出了一种新的方法,可以克服包含数字字符串的复杂,褪色和旧手写文档的困难。目标是创建一个可靠有效的系统,该系统自动识别古代手稿的数字字符串,有助于数字化记录。因此,本文提出了一个强大的视觉变压器框架,以识别手写数字字符串,而不会从较小数据集的未清洗图像中分割数字。所提出的方法是一个四步过程,包括预处理,通过象征化提取特征提取,使用视觉变压器的注意机制识别以及使用光束搜索解码器进行结果解码。将提出方法的性能与由卷积神经网络和长期记忆(CNN-LSTM)组成的混合方法进行比较。所提出的方法达到了56%的单词准确性,损失在更少的时间内低于0.6。结果表明,所提出的模型是一个快速学习者,可以在预期更少的时间内的实时场景中使用。这项研究的结果会影响邮政服务的数字化。在本文中还借助局部可解释的模型 - 不合Snostic解释(LIME)技术讨论了所提出的深度学习模型绩效解释。通过为实时应用程序提供软件即服务(SAAS)来概括所提出的方法的概括,以作为未来的研究方向。
这项研究探讨了通过功能磁共振成像(fMRI)应用的扩散模型和增强学习对解码神经反性(DECNEF)建模的应用。我们的方法论,降级差异策略优化(DDPO),整合了通过增强学习训练的扩散模型,以导航大脑活动变化的复杂动态。使用预先现有的Decnef数据集,我们实施了策略梯度方法,以迭代地完善扩散模型,旨在产生神经(voxel)活动的目标模式。我们的结果证明了这种方法对实现目标脑状态的策略进行建模的潜力,为研究神经反馈的机制及其对基础科学研究的意义及其对基础科学研究的影响和进行更有效的神经反馈实验提供了基础。
人类学习中有意识意识的必要性一直是心理学和神经科学的长期话题。先前对非意识联想学习的研究受到潜意识刺激的信噪比低的限制,并且证据仍然存在争议,包括不重复复制。使用功能性MRI解码神经反馈,我们指导来自男女的参与者产生类似于视觉感知现实世界实体(例如狗)时观察到的神经模式。重要的是,参与者仍未意识到这些模式所代表的实际内容。我们利用一种联想的十NEF方法将感知含义(例如狗)浸入日本的希拉加纳角色中,这些角色对我们的参与者没有固有的含义,绕开了角色与狗的概念之间的有意识联系。尽管缺乏对神经反馈目标的认识,但参与者还是成功地学会了激活双边锻造形式的目标感知表示。在视觉搜索任务中评估了我们培训的行为意义。ecnef和对照参与者搜索了由Decnef培训期间使用的Hiragana预先塑造的狗或剪刀目标或对照Hiragana。Decnef Hiragana并未对其相关目标进行搜索,但令人惊讶的是,参与者在寻找目标感知类别时受到了损害。因此,有意识的意识可能起作用,以支持高阶关联学习。这项工作还提供了关于神经代表性漂移的ectnef效应的说明。同时,在现有神经表示中的重新学习,修改或可塑性的较低级别形式可能会在不知不觉中发生,并且在原始培训环境之外会产生行为后果。
CD4017BC 和 CD4022BC 的配置允许中速操作并确保无风险计数序列。10/8 解码输出通常处于逻辑“0”状态,仅在其各自的时隙进入逻辑“1”状态。每个解码输出保持高电平 1 个完整时钟周期。进位输出信号每 10/8 个时钟输入周期完成一个完整周期,并用作任何后续阶段的纹波进位信号。