在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。
在不同领域的关系和应用。1–3由两个或更多供体中心组成的多齿配体可以连续延伸以特殊的模式延伸以产生一种聚合物形式,称为辅助聚合物(CPS); 4-12该术语是由J. C. Bailer在1967年引入的。13主要是,二羧酸盐和双吡啶基有机化合物用于设计CPS。CP的尺寸在很大程度上取决于有机连接器,金属节点和反应条件的性质,并且可以从1d延伸至2D和3D。在2D或3D CP中存在适当的孔隙度已定义了一种创新的材料,称为金属有机框架(MOF)。13–15 CPS/MOF,一类带有引人入胜的结构结构和拓扑结构的杂交多功能晶体材料已被广泛用于气体存储和分离,催化,感应,磁性,药物,药物递送,生物技术,生物技术,电导率,蛋白电导率,智能设备的制造等目前,全球主要的挑战是停止C级排放,探索绿色能源资源并保持零能源损失。 具有智能电导率和可持续性的材料高度优势。 有了这个期望,许多研究小组致力于将许多此类材料设计为目前,全球主要的挑战是停止C级排放,探索绿色能源资源并保持零能源损失。具有智能电导率和可持续性的材料高度优势。有了这个期望,许多研究小组致力于将许多此类材料设计为
摘要:本综述研究重点关注并网双馈感应发电机 (DFIG) 风电场智能控制系统中使用的各种方法。本文回顾了一种使用模糊协调 PI 的控制器,该控制器建议用于在大型风电场发生干扰时通过降压-升压转换器 (DC-DC 转换器) 改善与 DFIG 耦合的超级电容器 (SC) 的动态性能。此外,本研究回顾了一种俯仰角控制,用于在不同风速下调节风力涡轮机 (WT) 叶片的角度,以控制功率并安全运行 WT。在俯仰角上实施人工智能控制 (模糊方法) 取代传统控制以提高系统性能,模糊方法用于在各种工作条件下自动调整传统控制参数。然后,本文回顾了一种开发的控制技术,该技术使用区间型 2 模糊逻辑控制 (FLC) 调整 PI 来为由 DFIG 操作的 WT 进行最佳扭矩调节。建议的控制可调节机械转子速度的误差并产生实现最大输出功率的最佳扭矩。根据现有文献的结果,引入了 SC 到三相四线有源电力滤波器 (APF) 直流链路的集成,方法是使用由模糊控制方法控制的接口三级双向降压-升压转换器。关键词:智能控制系统;风能;电力电子;双馈感应发电机;最大功率跟踪。
激发态能量。43-52从双阳离子(n – 2) - 电子参考开始,n-电子
NOMENCLATURE DFIG Doubly Fed Induction generator MW, Mvar Megawatt, Mega volt ampere reactive WEC Wind Energy Conversion I, pv, Vpv Output current (A) and output voltage (V) PCC Point Of Common Coupling Iph Photocurrent generated by light (A) LVRT Low Voltage Ride Through Rs, Rsh Series resistance and shunt resistance (Ω) PSO Particle群的优化n,k的k理想因子和玻尔兹曼常数(1.38×10-23J/k)ITAE ITAE积分时间绝对误差t PV细胞温度(K)FRT故障乘坐D,Q D – Q轴成分
结果:此回顾性单中心,病例对照研究包括诊断为STEMI的糖尿病患者,他们在2021年至2022年之间在高等医疗保健中心接受了PPCI。研究人群包括SGLT2I用户(n = 130)和非SGLT2I用户(n = 165)。进行反概率倾向评分加权和双重稳健估计,以减少偏差并平衡协变量分布,以估计治疗者的平均治疗。在一个双重强大的逆概率加权回归模型中,在该模型中,协变量是平衡的,在SGLT2I-User组中也发现CI-AKI风险较低(OR:0.86 [0.76-0.98]; 95%CI; 95%CI; p = 0.028)。此外,发现在STEMI和患有PPCI的患者中,发现射血分数,入院肌酐,白蛋白,白蛋白和对比培养基的体积是Ci-Aki的独立预测指标。
潜在的结果,平均治疗效果,随机实验,合作调整,回归不连续性设计,观察力研究,混杂因素,敏感性分析,倾向分数,匹配,匹配,双重差异估计器,差异差异,仪器变量,仪器变量,异构治疗效果和最佳治疗方案。
57。Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。 调整关节建模方法来处理审查的协变量。 56。 Grosser,K.,MA,Y.,Marder,K。和T.P. Garcia 用审查协变量纠正非线性轨迹中的偏差。 55。 li,K.,Ma,Y.,Marder,K。和T.P. Garcia 超级双重稳健的估计器,用于提供信息的协变量审查。 54。 Lee,S。 *,理查森,B.D。 ∗( *共享第一个作者身份),MA,Y.,Marder,K。和Garcia,T.P。 右审查协变量的双重稳定估计器。 53。 Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。 纵向混合模型的估计器,以解释正确的审查协变量。 52。 Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。 评估估计量的鲁棒性,以审查提供信息的协变量。 51。 Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。调整关节建模方法来处理审查的协变量。56。Grosser,K.,MA,Y.,Marder,K。和T.P. Garcia 用审查协变量纠正非线性轨迹中的偏差。 55。 li,K.,Ma,Y.,Marder,K。和T.P. Garcia 超级双重稳健的估计器,用于提供信息的协变量审查。 54。 Lee,S。 *,理查森,B.D。 ∗( *共享第一个作者身份),MA,Y.,Marder,K。和Garcia,T.P。 右审查协变量的双重稳定估计器。 53。 Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。 纵向混合模型的估计器,以解释正确的审查协变量。 52。 Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。 评估估计量的鲁棒性,以审查提供信息的协变量。 51。 Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Grosser,K.,MA,Y.,Marder,K。和T.P. Garcia用审查协变量纠正非线性轨迹中的偏差。55。li,K.,Ma,Y.,Marder,K。和T.P. Garcia超级双重稳健的估计器,用于提供信息的协变量审查。54。Lee,S。 *,理查森,B.D。 ∗( *共享第一个作者身份),MA,Y.,Marder,K。和Garcia,T.P。 右审查协变量的双重稳定估计器。 53。 Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。 纵向混合模型的估计器,以解释正确的审查协变量。 52。 Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。 评估估计量的鲁棒性,以审查提供信息的协变量。 51。 Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Lee,S。 *,理查森,B.D。∗( *共享第一个作者身份),MA,Y.,Marder,K。和Garcia,T.P。右审查协变量的双重稳定估计器。53。Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。 纵向混合模型的估计器,以解释正确的审查协变量。 52。 Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。 评估估计量的鲁棒性,以审查提供信息的协变量。 51。 Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Vazquez,J.E.,MA,Y.,Marder,K。和Garcia,T.P。纵向混合模型的估计器,以解释正确的审查协变量。52。Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。 评估估计量的鲁棒性,以审查提供信息的协变量。 51。 Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Vazquez,J.E.,Ashner,M.C.,Ma,Y.,Marder,K。和Garcia,T.P。评估估计量的鲁棒性,以审查提供信息的协变量。51。Zhao,B.,Zeng,D.,Garcia,T.P。 ,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。Zhao,B.,Zeng,D.,Garcia,T.P。,Li,H.,Xie,W.,Tang,Y.,Lopez,J.S。和Cai,J。在西班牙裔社区健康研究/拉丁美洲人研究中,用于分析具有复杂采样设计的相关数据的多级建模。
s = 7。8和13 TEV。LHCB [8]宣布发现了另外三个Tetraquark候选人X(4274),X(4500)和X(4700)。不同的作者已经提出了许多模型和方法来研究四方国家。jaffe [9]研究了Quark Bag模型框架中多Quark Hadrons Q 2 2 Q 2的光谱和主要的衰减耦合。在发现J/ Meson后,Iwasaki [10]提出了Tetraquark State T 4 C。Debastiani等。[11]在diquark-antidiquark方法和介子分子中研究了四夸克质量。Chen等。 [12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。 Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chen等。[12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Wang等。[13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。双重的tetraquark群众进行了研究。Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chakrabarti等。[19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。