摘要 — 近几年来,关于量子计算和密码分析的研究显著增加。作为该领域的重要组成部分之一,各种量子算术电路的构造也已被提出。然而,尽管有限域逆在实现量子算法中有着重要作用,例如椭圆曲线离散对数问题 (ECDLP) 的 Shor 算法,但关于有限域逆的研究却很少。在本研究中,我们建议减少现有的基于量子费马小定理 (FLT) 的二进制有限域逆电路的深度。具体而言,我们建议采用完整的瀑布方法将 Itoh-Tsujii 的 FLT 变体转换为相应的量子电路,并删除 Banegas 等人在先前工作中使用的逆平方运算,从而降低 CNOT 门的数量(CNOT 计数),这有助于减少整体深度和门数。此外,首先在 Qiskit 量子计算机模拟器中构建我们的方法和以前的工作并进行资源分析,比较成本。我们的方法可以作为一种节省时间的实现方式。
摘要:Shor 算法在多项式时间内解决了椭圆曲线离散对数问题 (ECDLP)。为了优化二进制椭圆曲线的 Shor 算法,降低二进制域乘法的成本至关重要,因为它是最昂贵的基本算法。在本文中,我们提出了用于二进制域 (F 2 n) 乘法的 Toffoli 门数优化的空间高效量子电路。为此,我们利用类 Karatsuba 公式并证明其应用可以在没有辅助量子位的情况下提供,并在 CNOT 门和深度方面对其进行了优化。基于类 Karatsuba 公式,我们驱动了一种空间高效的基于 CRT 的乘法,该乘法采用两种非原地乘法算法来降低 CNOT 门成本。我们的量子电路不使用辅助量子位,并且 TOF 门数极低,为 O ( n 2 log ∗ 2 n ),其中 log ∗ 2 是一个增长非常缓慢的迭代对数函数。与最近基于 Karatsuba 的空间高效量子电路相比,我们的电路仅需要 Toffoli 门数的 (12 ∼ 24%),且加密字段大小 ( n = 233 ∼ 571 ) 具有可比深度。据我们所知,这是第一个在量子电路中使用类似 Karatsuba 的公式和基于 CRT 的乘法的结果。
摘要。本文为二进制椭圆曲线提供了具体的量子密码分析,以实现时间效率的实现透视(即减少电路深度),并补充Banegas等人的先前研究,该研究的重点是空间效率的效率(即电路宽度)。为了实现深度优化,我们提出了改进Karatsuba乘数和基于FLT的反转的现有电路实现,然后在Qiskit Quantum Computer Simulator中构建和分析资源。提出的乘数架构,改善了Van Hoof等人的量子Karatsuba乘数,减少了与O(n log 2(3))界限的深度和较低的CNOT门,同时保持了相似数量的to效应和鸡蛋。此外,我们所证明的基于FLT的反演会减少CNOT数量和整体深度,并具有较高的量子量。最后,我们采用了拟议的乘数和基于FLT的IN-版本来执行二进制点添加的量子隐性分析以及用于椭圆曲线离散对数问题(ECDLP)的完整shor的算法。结果,除了减小深度外,与先前的工作相比,我们还能够降低多达90%的to oli门,从而显着改善,并提供对量子密码分析的新见解,以实现高度优化的实施。