空间体系结构的领域不仅必须与真空运行的环境挑战相抗衡,而且还必须在火箭有效载荷上市的物理尺寸限制,风险的宇航员太空步行和装配机器人的机器人移动性有限的情况下。为了应对这些挑战,我们提出了一个新的建筑范式,该范式超越了轨道上的铝制圆柱体,以朝着较大的批量,模块化的空间站建设,这些空间站仍然符合生命支持系统和安全性的任务。我们的Tesserae(用于探索可重新配置的自适应环境的镶嵌电磁空间结构)研究平台基于生物含量的原理:遵循某种“编码”增长模式的离散节点的自组装。我们还引入了可鲁棒性和适应性的冗余和可重构零件。我们的工作着重于自主自我组装和自我调节空间结构,而无需人类EVA或机器人剂。总体而言,Tesserae硬件平台包括一系列用于自我意识的自我组装和维护的功能,可允许轨道上的多模块空间体系结构的空间结构和可重新配置。我们的研究平台将磁对接,传感器技术和控制代码集成到将公共基本单元粘合到模块化结构中。该平台的早期,小型硬件测试台在2020年的30天内成功部署在ISS上,并计划进一步执行任务。我们的ICES 2021的论文提出了将这种结构,空间自组装与内部宜居性整合到内部宜居性的愿景,其中包括用于模块化结构的新的ECLSS集成计划。我们还指出了Tesserae的双重任务概念,a)合并a)微重力自组装和轨道操作与b)能够自我分配和重新使用结构瓷砖在行星表面上使用。
生命支持系统 (LSS) 对载人航天至关重要;没有它们,人类就无法生存。即将到来的长期任务需要强大的环境控制 LSS (ECLSS),因为它们的日照和即时补给的前景有限。作为 LSS 的一部分,由于运输质量限制,水净化系统将需要高可靠性、可持续性和效率,因为常规供水将非常困难,而且为未来的栖息地补给成本高昂。这表明需要一种高效的处理方法和对每个废水源的再利用。机组人员会产生各种废水流,虽然目前并非所有废水流都经过处理,但栖息地的成功将需要对每条废水流进行处理和利用,作为“资源”而不是“废物”。这些废水流包括人类废水(尿液、粪便)、食物垃圾(盘子垃圾、不可食用的植物生物质)、湿度冷凝水、卫生用水(淋浴、口腔、洗手)和洗衣。由于长期运营,人们通常依赖成熟的技术。对于未来长期任务,这种模式必须转变,纳入以满足任务要求为基础的技术,而不是牺牲生产力来取代经过验证的现有技术能力。许多物理、化学和生物水处理技术已被证实并可用于陆地应用。在此,这些技术被收集到一个“工具箱”中,以在重力减小的情况下执行有效水净化步骤的可能功能。选择标准取决于方法(物理、化学或生物)、复杂性/组件、陆地性能和对太空生命支持的潜在适用性。利用这种“工具箱”方法为技术开发和选择未来架构提供了一种简化的方法,以直接响应动态空间生命支持要求。建立“工具箱”还可以有组织、高效地识别最合适的技术。从那里,可以进一步开发和适当评估最有可能配置为任务要求的技术。本演讲旨在全面回顾空间生命支持水净化要求和挑战,并提出可用技术的“工具箱”方法,以帮助完成为短期和长期 NASA 任务架构选择合适的 LSS 水净化的艰难过程。