背景:心脏骤停(CA)是重症患者死亡的主要原因。临床研究表明,对CA的早期鉴定会降低死亡率。算法能够使用多元时间序列数据来预测具有高灵敏度的Ca。但是,这些算法遭受了很高的错误警报率,它们的结果在临床上不可解释。目标:我们使用多分辨率统计特征和基于余弦相似性的特征提出了一种集成方法,以及时预测Ca。此外,这种方法提供了临床上可解释的结果,临床医生可以采用这些结果。方法:使用来自“重症监护IV数据库”和EICU协作研究数据库的医学信息MART的数据回顾性分析患者。基于被诊断为心力衰竭的成年人的24小时时间窗口的多元生命体征,我们提取了基于多解决的统计和基于余弦相似性的特征。这些功能用于构建和发展梯度提升决策树。因此,我们采用了对成本敏感的学习作为解决方案。然后,进行了10倍的交叉验证以检查模型性能的一致性,并使用Shapley添加说明算法来捕获所提出模型的整体可解释性。接下来,使用EICU协作研究数据库进行了外部验证以检查概括能力。根据CA的及时预测,提出的模型达到了高于0.80的AUROC,以预测提前6小时的CA事件。结果:所提出的方法在接收器工作特性曲线(AUROC)下产生了0.86的总面积,并且在Precision-Recall曲线(AUPRC)下为0.58。所提出的方法同时提高了精度和灵敏度以增加AUPRC,从而减少了错误警报的数量,同时保持了高灵敏度。此结果表明所提出的模型的预测性能优于先前研究中报告的模型的性能。接下来,我们证明了特征重要性对所提出方法的临床解释性的影响,并推断了非CA和CA组之间的影响。最后,使用EICU协作研究数据库进行了外部验证,并且在一般重症监护病房的人群中获得了0.74的AUROC,AUPRC为0.44。结论:拟议的框架可以为临床医生提供更准确的CA预测结果,并通过内部和外部验证降低错误警报率。此外,临床上可解释的预测结果可以促进临床医生的理解。此外,生命体征变化的相似性可以为患有心力衰竭相关诊断患者的CA预测的时间模式变化提供见解。因此,我们的系统足以适合常规临床使用。此外,关于拟议的CA预测系统,在未来的数字健康领域开发了临床成熟的应用程序。
背景:性障碍性贫血是一种严重的血液学疾病,其标志是全年症和骨髓衰竭。ICU的入院通常反映了需要重症监护的疾病进展或并发症。预测这些患者的短期生存对于个性化治疗和资源优化至关重要。编号图为整合临床参数提供了一种实用的工具,提供了准确的可视化生存预测,以指导ICU中性贫血患者的决策。方法:使用模拟IV数据库,我们确定了被诊断为性贫血的ICU患者。从数千个可用的变量中,我们从五个维度上提取数据:人口统计学,合成指标,实验室事件,合并症和药物使用情况。基于现有的性质贫血研究,进一步完善了400多个变量,并应用了机器学习技术来确定建模的七个最有效的预测指标。使用机器学习方法进行预处理,这些预测因素的可行性通过其他分类和回归模型验证,验证方法是AUROC。此外,使用来自EICU协作研究数据库的数据进行了外部验证,以评估我们的模型的普遍性。使用逻辑回归(LR)构建了互动命名图,以预测患有同性血症患者的7天,14天和28天的死亡率。结果:这项研究中总共包括了1,662名被诊断为性贫血的患者,其中7:3的比例分为训练和测试队列。逻辑回归模型表现出强烈的预测性能,分别为7天,14天和28天死亡率预测的AUC值分别达到0.8227、0.8311和0.8298。使用EICU数据库的外部验证进一步证实了该模型的通用性,AUC值为0.7391、0.7119和0.7093。这些结果突出了该模型在预测性障碍性贫血患者短期生存方面的稳定性和有效性。结论:APS III领导的一组七个预测因子被证明可有效地建模性质贫血患者的短期生存。使用这些预测因素,COX和Logistic回归模型生成了列线图,这些图可以准确预测7天,14天和28天的死亡率。这些工具可以支持临床医生进行个性化的风险评估和决策。
目的颅内压 (ICP) 监测是追踪神经外科患者的一种广泛使用且必不可少的工具,但仅使用基于 ICP 的范例来指导管理有局限性。有人提出,除了平均 ICP 之外,ICP 变异性 (ICPV) 可能是神经系统结果的有用预测指标,因为它代表了完整脑压自动调节的间接测量。然而,目前关于 ICPV 适用性的文献显示 ICPV 和死亡率之间存在相互矛盾的关联。因此,作者旨在使用 eICU 协作研究数据库 2.0 版研究 ICPV 对颅内高压发作和死亡率的影响。方法作者从 eICU 数据库中提取了 868 名神经外科患者的 1,815,676 个 ICP 读数。使用两种方法计算 ICPV:滚动标准差 (RSD) 和滚动平均值的绝对偏差 (DRM)。颅内高压发作定义为在任何 30 分钟的时间窗口中至少有 25 分钟的 ICP > 22 毫米汞柱。使用多元逻辑回归计算平均 ICPV 对颅内高压和死亡率的影响。使用具有长短期记忆的循环神经网络对 ICP 和 ICPV 进行时间序列预测,以预测未来的颅内高压发作。结果使用两种 ICPV 定义,较高的平均 ICPV 与颅内高压显着相关(RSD:aOR 2.82,95% CI 2.07–3.90,p < 0.001;DRM:aOR 3.93,95% CI 2.77–5.69,p < 0.001)。 ICPV 与颅内高压患者的死亡率显著相关(RSD:aOR 1.28,95% CI 1.04–1.61,p = 0.026,DRM:aOR 1.39,95% CI 1.10–1.79,p = 0.007)。在机器学习模型中,两种定义的 ICPV 均取得了同样好的结果,DRM 定义在 20 分钟内获得的最佳 F1 得分为 0.685 ± 0.026,曲线下面积为 0.980 ± 0.003。结论作为神经监测的一部分,ICPV 可作为预测神经外科重症监护中颅内高压发作和死亡率的辅助手段。进一步研究使用 ICPV 预测未来的颅内高压发作可能有助于临床医生对患者的 ICP 变化做出迅速反应。
摘要 目的 在可能出现血流动力学障碍或可能需要紧急干预的情况下,胃肠道 (GI) 出血通常需要重症监护病房 (ICU)。然而,许多进入 ICU 的患者出血停止,不需要进一步干预,包括输血。本研究提出了一种人工智能 (AI) 解决方案,用于预测入住 ICU 的胃肠道出血患者的再出血。方法 使用两个公开的 ICU 数据库(重症监护医学信息集市 V.1.4 数据库和 eICU 协作研究数据库)训练和测试机器学习算法,使用免于输血作为可能不需要 ICU 级护理的患者的代理。使用现成的数据(包括实验室、人口统计和临床参数)探索了多个初始观察时间范围,总共 20 个协变量。结果最佳模型使用 5 小时的观察期来实现接受者操作曲线下面积 (ROC-AUC) 大于 0.80。该模型在针对两个 ICU 数据库进行测试时表现稳健,所有数据库的 ROC-AUC 都相似。结论人们认识到人工智能对医疗创新的潜在破坏性影响,但在实施和部署之前,应考虑人工智能对医疗应用的风险和当前的局限性。所提出的算法并非旨在取代临床决策,而是为临床决策提供参考。前瞻性临床试验验证作为分类工具是必要的。
背景:流行病学研究表明,血液尿素氮(BUN)和血清白蛋白降低可以独立地预测慢性阻塞性肺疾病(COPD)患者的不良临床结局。但是,在患有COPD的重症患者中,BUN-Albumin比率(BAR)的预测性能仍有待证实。这项研究旨在调查重症监护病房(ICU)患者与COPD的BAR和全因死亡率之间的关联。方法:这是一项回顾性研究,其中包括每次ICU入院的第一天的COPD患者和血清白蛋白价值,并且从EICU协作研究数据库中获得了数据。所包含的COPD患者被分为三组(T1-T3)。多元逻辑回归和COX比例危害模型分别用于检查BAR和全因院内和ICU死亡率之间的关联。Kaplan – Meier曲线,以评估三组之间的生存差异,并将差异与对数贷方测试进行了比较。结果:最终分析中总共包括4037名患者,院内和ICU死亡率分别为11.79%和6.51%。多元逻辑回归分析表明,连续条是院内死亡率的重要风险预测因子(OR:1.039,95%CI:1.026–1.052,p <0.001)和ICU死亡率(OR:1.030,95%CI:1.015%CI:1.015-1.045,P <0.045,P <0.001)。相关的亚组分析表明,这种正相关可能会在某些人口环境中有所不同。COX比例危害模型显示,最高的bar三位杆(T3)患者与院内死亡率的较高风险显着相关(HR:1.983,95%CI:1.419–2.772,p <0.001)和ICU死亡率(HR:2.166,95%CI:1.3333-3.418,p <0.418,P <0.418,P <0.418,P <0.418,p <0.001。Kaplan – Meier曲线表明,在三个三分之一组中,全因死亡率的存活差在统计学上是显着的(log-rank p <0.0001)。结论:高水平的酒吧与危重患者COPD患者的全因死亡率增加有关。作为一种创新且有前途的生物标志物,BAR可能有助于预测COPD患者的高死亡风险。关键词:慢性阻塞性肺部疾病,血尿氮,血清白蛋白,全因死亡率,重症监护病房
背景:临床注释包含与患者过去和当前健康状况有关的结构化数据之外的上下文化信息。目标:本研究旨在设计一种多模式深度学习方法,以使用入院临床注释和易于收集的表格数据来提高心力衰竭(HF)的医院结果的评估精度。方法:多模式模型的开发和验证数据是从3个开放式美国数据库中回顾性得出的,包括重症监护III V1.4(MIMIC-III)的医学信息MART和MIMIC-IV V1.0和MIMIC-IV V1.0,从2001年至2019年的研究中收集了来自2019年的教学医院,并从2019年进行了研究。 2015。研究队列由所有关键HF患者组成。分析了临床注释,包括主要投诉,当前疾病的历史,体格检查,病史和入院药物以及电子健康记录中记录的临床变量。我们为院内患者开发了一个深度学习死亡率预测模型,该模型接受了完整的内部,前瞻性和外部评估。使用综合梯度和沙普利添加说明(SHAP)方法来分析危险因素的重要性。结果:该研究包括发育套件中的9989(16.4%)患者,内部验证集中的2497(14.1%)患者,前瞻性验证集中的1896年(18.3%),外部验证集中的7432(15%)患者。在早期评估中,病史和体格检查比其他因素更有用。模型的接收器工作特性曲线下的面积为0.838(95%CI 0.827-0.851),0.849(95%CI 0.841-0.856)和0.767(95%CI CI 0.762-0.772),对于内部,前瞻性,前瞻性,外部效力,以及外部效力。多峰模型的接收器操作特性曲线下的面积优于所有测试集中的单峰模型的区域,而表格数据有助于更高的歧视。结论:结合入学笔记和临床表格数据的多模式深度学习模型显示,有希望的功效是评估HF患者死亡风险的潜在新方法,提供了更准确,更及时的决策支持。
背景:心脏骤停 (CA) 是重症监护病房 (ICU) 患者死亡的主要原因之一。尽管已经开发了许多具有高灵敏度的 CA 预测模型来预测 CA,但由于缺乏泛化和验证,它们的实际应用一直具有挑战性。此外,不同 ICU 亚型患者之间的异质性尚未得到充分解决。目标:本研究旨在提出一种临床可解释的集成方法,用于在 24 小时内及时准确地预测 CA,而不考虑患者的异质性,包括不同人群和 ICU 亚型之间的差异。此外,我们进行了独立于患者的评估以强调模型的泛化性能,并分析了临床医生可以实时轻松采用的可解释结果。方法:使用重症监护医学信息集市-IV (MIMIC-IV) 和 eICU 协作研究数据库 (eICU-CRD) 的数据对患者进行回顾性分析。为了解决性能不佳的问题,我们使用基于生命体征、多分辨率统计分析和基尼指数的特征集构建了我们的框架,并以 12 小时的窗口期来捕捉 CA 的独特特征。我们从每个数据库中提取了 3 种类型的特征,以比较 MIMIC-IV 中的高风险患者组和 eICU-CRD 中没有 CA 的患者之间的 CA 预测性能。在特征提取之后,我们使用具有成本敏感学习的特征筛选开发了一个表格网络 (TabNet) 模型。为了评估实时 CA 预测性能,我们使用了 10 倍留一患者交叉验证和交叉数据集方法。我们在每个数据库中针对不同队列人群和 ICU 亚型评估了 MIMIC-IV 和 eICU-CRD。最后,使用 eICU-CRD 和 MIMIC-IV 数据库进行外部验证,以评估模型的泛化能力。所提方法的决策掩码用于捕获模型的可解释性。结果:在 MIMIC-IV 和 eICU-CRD 中,所提出的方法在不同队列人群中的表现均优于传统方法。此外,它在两个数据库中对各种 ICU 亚型的准确度都高于基线模型。可解释的预测结果可以作为非 CA 组和 CA 组之间的统计比较,从而增强临床医生对 CA 预测的理解。接下来,我们分别使用在 MIMIC-IV 和 eICU-CRD 上训练的模型测试了 eICU-CRD 和 MIMIC-IV 数据集,以评估泛化能力。结果显示,与基线模型相比,性能更优越。结论:我们用于学习独特特征的新框架在不同的 ICU 环境中提供了稳定的预测能力。大多数可解释的全局信息揭示了 CA 组和非 CA 组之间的统计差异,证明了其作为临床决策指标的实用性。因此,所提出的 CA 预测系统是一种临床