摘要:本文介绍了一种基于估计的反步控制律设计,用于无人驾驶飞行器 (UAV) 跟踪 3-D 空间中的移动目标。地面传感器或机载导引头天线为追踪无人机提供距离、方位角和仰角测量,追踪无人机实施扩展卡尔曼滤波器 (EKF) 来估计目标的完整状态。然后,非线性控制器利用该估计的目标状态和追踪者的状态为追踪无人机提供速度、飞行路径和航向/航向角命令。针对三种情况评估与测量不确定性有关的追踪性能:(1) 平稳白噪声;(2) 平稳有色噪声和 (3) 非平稳(距离相关)白噪声。此外,为了提高跟踪性能,通过考虑测量中与范围相关的不确定性,使测量模型更加真实,即当追逐者接近目标时,EKF 中的测量不确定性会降低,从而为无人机提供更准确的控制命令。这些情况的仿真结果显示了目标状态估计和轨迹跟踪性能。
混合电动车辆电池组中的电池管理系统必须估算该包目前的工作状况的值。其中包括:电池最新电池,电力褪色,容量褪色和瞬时功率。估计机制必须随着细胞的年龄而适应细胞特征的变化,因此在包装的寿命中提供了准确的估计值。在一系列三篇论文中,我们提出了基于扩展的卡尔曼过滤(EKF)的方法,这些方法能够实现锂离子聚合物电池组的这些目标。我们希望它们也将在其他电池化学上运作良好。这些论文涵盖了所需的数学背景,细胞建模和系统识别要求以及最终解决方案以及结果。第三篇论文结束了该系列的结论,其中列出了五个其他应用,在典型的BMS算法中可以使用EKF或EKF的结果:在车辆闲置之后的初始化状态估计值一段时间后的初始化;在估计值中估算具有动态误差界限的最新电荷;估计包装包/充电功率;跟踪更改包装参数(包括功率褪色和容量褪色)作为包装年龄,因此提供了对最新健康状况的定量估计;并确定必须均等的细胞。提出了包装测试的结果。©2004 Elsevier B.V.保留所有权利。
1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1 1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。 摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。 SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。 因此,研究重点是使用算法准确估算SOC和电压。 具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。 但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。 这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。1频道工程系,香港理工大学,香港,中国2号医学和工业超声中心,詹姆斯·瓦特工程学院,格拉斯哥大学,格拉斯哥大学,格拉斯哥大学,英国格拉斯哥,英国21118694r@connect.polyu.hk; tianshidexuanzhe@gmail.com; kokokhlam@polyu.edu.hk; kwokho.lam@glasgow.ac.uk通信:kwokho.lam@glasgow.ac.uk,中国香港香港理工大学电气工程系;詹姆斯·瓦特工程学院医学和工业超声学院,格拉斯哥大学,格拉斯哥大学,英国苏格兰,格拉斯哥大学†同样贡献。摘要:随着电动汽车(EV)的普及,可充电电池的电压和最新电压(SOC)估计具有重要意义。SOC参数已被用作传递可充电锂离子电池(LIB)的电能的指标,而电压已是监测所需的关键参数,以防止造成电池损坏的原因,尤其是在充电和放电过程中。因此,研究重点是使用算法准确估算SOC和电压。具有避免重大估计误差的能力,使用间接测量值(例如电压和电流)获得的参数,已采用常规扩展卡尔曼过滤(EKF)来估计SOC的最佳值。但是,该算法在SOC和电压估计中的精度有限,并且对电压预测的误差降低仍然没有深入研究。这项研究表明,常规的EKF算法会引起估计错误,尤其是当当前突然改变时。尽管可以通过诸如Double Kalman滤波等联合算法提高SOC精度,但是由于非线性误差的叠加,仍然需要优化EKF本身。在这项研究中,进行了修改后的扩展卡尔曼滤波(MEKF)算法的研究,以估算LIB的电压和SOC,并具有估计精度的极大提高。Yuasa Lev50单元在298 K处的标准放电率为0.2 c,以获取离线参数,然后使用新提出的新提出的动态估计数学电池模型(DBOFT)进行优化。这是第一次提出一种结合增益矩阵和噪声的方法,以减少当前转弯点的电压估计误差,从而大大提高了电压估计的准确性。具体来说,MEKF算法能够实时调整参数并减少SOC
本文介绍了USV-Tracker,这是一种针对用于实用应用(例如地表调查和目标跟踪)的无人层面车辆(USV)的新型跟踪系统。该系统应对三个关键挑战:感知鲁棒性,跟踪隐藏和计划效率。这项工作的贡献是多方面的:(1)使用扩展的卡尔曼滤波器(EKF)的多传感器融合框架来增强目标检测和定位准确性,集成了来自相机,激光镜头,GPS和IMU传感器的数据。(2)一种两阶段的路径计划算法,该算法生成遮挡避免轨迹并采用虚拟弹性力约束来保持适当的相对定位。在密集的障碍环境中,该算法倾向于靠近目标,并结合了FOV取向约束以确保稳定的感知。(3)一种可见性感知的控制策略,可通过基于EKF的轨迹预测来确保持续的目标可观察性。凉亭中的模拟和相应的物理实验验证了系统的有效性和鲁棒性,证明了其在现实世界中的适用性。计算工作负载是在受约束的车载计算机上管理的,强调了系统的实用性。
摘要 — 在净零碳转型下,锂离子电池 (LIB) 在支持更多可再生能源发电的连接、提高电网弹性和创建更灵活的能源系统方面发挥着关键作用。然而,电池的使用寿命较短且成本相对较高,这阻碍了电池技术(如可再生资源存储)的更广泛应用。此外,电池的使用寿命受材料成分、系统设计和运行条件的显著影响,因此使电池系统的控制和管理更具挑战性。数字化和人工智能 (AI) 为建立电池数字孪生提供了机会,它具有巨大的潜力来提高电池管理系统的态势感知并使电池存储单元实现最佳运行。准确估计充电状态 (SOC) 可以指示电池的状态,为维护提供有价值的信息并最大限度地延长其使用寿命。本文提出了一种基于连接 LSTM(长短期记忆)和 EKF(扩展卡尔曼滤波器)的混合模型的数字孪生驱动框架来估计锂离子电池的 SOC。 LSTM 为 EKF 提供更准确的初始 SOC 估计和阻抗模型数据。根据实验结果,开发的电池数字孪生被认为对初始 SOC 条件的依赖性较小,并且与传统方法相比具有更低的 RMSE(均方根误差)且更稳健。
在各种军事和非军事应用中具有重要意义。机载传感器精度和状态估计算法是与性能方面相关的重要问题。我们的研究重点是 OktoKopter,它是成功的通用航空平台之一。多旋翼飞机配备了全球定位系统 (GPS)、指南针、高度控制和遥测等,因此这些功能使其功能强大且用途广泛。在本文中,我们首先提出一个传感器融合模型,然后对三种状态估计算法进行比较,即卡尔曼、扩展卡尔曼滤波器 (EKF) 和无迹卡尔曼滤波器 (UKF)。发现 UKF 的性能最好;结果与算法的理论概念和实际实验数据相吻合。
本文介绍了一种新颖的框架,该框架将用于特征检测的卷积神经网络 (CNN) 与协变高效 Procrustes 视角 n 点 (CEPPnP) 求解器和扩展卡尔曼滤波器 (EKF) 相结合,以实现对非合作航天器周围近距离操作的稳健单目姿态估计。在役服务航天器对非活动航天器的相对姿态估计是当前和计划中的太空任务设计中的一项关键任务,因为它与近距离操作相关,例如在轨服务和主动碎片清除。这项工作的主要贡献在于通过将协方差矩阵与 CNN 为每个检测到的特征返回的热图相关联,从图像处理步骤中获取统计信息。此信息包含在 CEPPnP 中,以提高滤波器初始化期间姿态估计步骤的准确性。导出的测量协方差矩阵用于紧密耦合的 EKF,以便更好地表示特征检测步骤中的测量误差。这提高了滤波器在 CNN 检测不准确时的鲁棒性。在目标的光照条件和部分掩蔽条件下,所提出的方法能够返回相对姿态以及相对平移和旋转速度的可靠估计值。欧洲航天局 Envisat 航天器的合成 2D 图像用于生成数据集,用于训练、验证和测试 CNN。同样,这些图像用于重建代表性的近距离场景,以验证所提出的方法。
图 3.11:GPS 与垂直陀螺仪姿态.................................................................................... 41 图 3.12:GPS 与垂直陀螺仪姿态.................................................................................... 41 图 3.13:卡尔曼滤波器序列...................................................................................... 42 图 3.14:卡尔曼滤波器状态和协方差矩阵的进展....................................................... 46 图 3.15:扩展卡尔曼滤波器 (EKF) 序列.................................................................... 47 图 4.1:YF-22 机载计算机 2.................................................................................... 52 图 4.2:NovAtel GPS.................................................................................................... 53 图 4.3:Goodrich Systems 垂直陀螺仪.................................................................... 54 图 4.4:IMU 与 GPS 测量获取率............................................................................. 55 图 4.5:GPS 位置(放大)..................................................................................... 57 图 4.6:GPS 位置 -瞬时信号丢失................................................................................ 57 图 4.7:方差计算的稳定状态时间段.................................................... 59 图 4.8:GPS 辅助 INS/垂直陀螺仪框图.................................................... 61 图 4.9:滤波处理序列....................................
首先,根据泰勒展开式对最近发展起来的非线性滤波方法——Cuature卡尔曼滤波器(CKF)的性能评估进行了分析。理论分析表明,非线性滤波方法CKF只有在非线性系统中实现时才显示出其优势。类似地,非线性方向余弦矩阵(DCM)表达式被纳入紧密耦合的导航系统中,以表示真实导航坐标系和估计导航坐标系之间的对准误差。仿真和实验结果表明,在不可观测的大指向误差下,以及在 GPS 故障且指向误差快速累积导致 psi 角的表达式失效的情况下,CKF 的性能优于扩展卡尔曼滤波器(EKF),从而表达一定程度的非线性。