acs:自适应通信系统 ai:人工智能 ato:自动化列车运行 ats:自动化列车监控 BiM:建筑信息模型 B2B:企业对企业 capeX:资本支出 cBtc:基于通信的列车控制 cca:交叉活动 ccs:控制指挥系统 cctv:闭路电视 cDas:联网驾驶员咨询系统 ceF:连接欧洲设施 ceRt:网络应急响应小组 cots:商用现货 Das:驾驶员咨询系统 ess:能源存储系统 enisa:欧洲网络和信息安全局 eRRac:欧洲铁路研究咨询委员会 eRtMs:欧洲铁路交通管理系统 etcs:欧洲列车控制系统 FRMcs:未来铁路移动通信系统 Goa:自动化等级 Gnss:全球导航卫星系统 GsM-R:全球移动通信系统 - 铁路 hMi:人机界面 hvac :供暖、通风和空调 i2i:基础设施到基础设施 ict:信息和通信技术 iot:物联网 ip:创新计划 ipR:知识产权 iso:国际标准化组织 it:信息技术 its:智能交通系统 lcc:生命周期成本 Kic:知识与创新社区 Kpi:关键绩效指标 Maas:移动即服务 Mocc:多式联运运营控制中心 naas:网络即服务 nis
封面设计:EEA封面图像©Tobias Terman Olsen布局:VITO出版日期:2025年1月EEA活动气候变化缓解和适应该报告的法律通知准备本报告的资金由欧洲环境局资助,作为欧洲气候变化中心缓解欧洲主题中心的赠款的一部分,并表达了作者的观点。本出版物的内容不一定反映欧洲委员会或欧盟其他机构的立场或意见。欧洲环境局和欧洲气候变化缓解中心均不对本出版物中包含的信息的重复使用所产生的任何后果负责。等CM协调员:Vlaamse Intelling Voor Technologisch Onderzoek(Vito)等CM Partners:Ether Limited,Citepa,捷克水信学院(CHMI),EMISIA,EMISIA,Stiftelsen Norsk Institutt Institutt,用于LUFTFORSKNING(NILU)(NILU)InstitutfürAngewandteökologie,Öko -Recherche gmbh -bürofürumweltforschungund -beratung -beratung,rijks voor voor voor voor voor voor voor voors voors voors voors voor &Mobility Leuven(TML),Umweltbundesamt GmbH(UBA)。版权通知©欧洲气候变化缓解中心,如果确认来源是确认的,则授权2025年繁殖。[Creative Commons Attribution 4.0(Internation)] doi:10.5281/Zenodo.14889499(来自Zenodo)有关欧盟的更多信息,请在互联网(http://europa.eu)上获得。欧洲气候变化中心缓解https://www.eionet.europa.eu/etcs/etc-cm etcm@vito.be
缩写 说明 ARGE 工作组、联盟 AWB RFC 阿尔卑斯-西巴尔干铁路货运走廊 BCP 过境点 BiH 波斯尼亚和黑塞哥维那 CEF 连接欧洲设施 CEFTA 中欧自由贸易协定 CID 走廊信息文件 CNC 核心网络走廊 COSCO 中国远洋运输公司 C-OSS 走廊一站式服务 CPI 腐败感知指数 DG MOVE 交通运输总司 EBRD 欧洲复兴开发银行 EC 欧洲委员会 EIB 欧洲投资银行 EIM 欧洲铁路基础设施管理者 ERTMS 欧洲铁路交通管理系统 ETC 欧洲交通走廊 ETCS 欧洲列车控制系统 EU 欧盟 GA 通用方法 GSM-R 全球铁路移动通信系统 HSH 阿尔巴尼亚铁路 IFI 国际融资机构 IM 基础设施管理者 INF TSI 互操作性基础设施的技术规范 IPA加入前援助 IT 信息技术 KE 关键专家 L 长度 LPI 物流绩效指数 MC MC 机动顾问有限公司 MoU 谅解备忘录 MZ 马其顿铁路 MS 欧盟成员国 NKE 非关键专家 NSA 国家安全局 OSE 希腊铁路组织 OSJD 铁路合作组织 OSS 一站式服务 PAP 预定路径 PCS 路径协调系统 PMB 预备管理委员会 REBIS 巴尔干地区基础设施研究 RFC 铁路货运走廊 RNE RailNetEurope RRT 铁路终点站 RU 铁路企业 SDG 可持续发展目标 SEEP 东南欧缔约方 SEETO 东南欧交通观察站 TAF TSI 技术货运服务远程信息处理应用互操作性规范 TCCCom 交通控制中心通信
1。引入美国沿海地区的风力涡轮机,包括大西洋,墨西哥湾和加勒比恩海湾,以及东太平洋外大陆架区域,面临热带气旋(TCS)(TCS)和热带气旋(ETCS)的巨大风险。这些极端的天气事件会通过风阵风,快速风向变化,极端的波浪和大量降水,影响涡轮机叶片,地基,电力系统和其他基础设施。关于极端天气负荷的历史数据有限,从而使脆弱性评估具有挑战性。例如,由于米托斯元素条件低估,北海80%需要维修(Diamond 2012)。尽管在欧洲海上风能系统中产生了这些恶劣的天气影响,但这种情况并不代表美国近海地区的极端状况,造成飓风有时会袭击。相反,位于北太平洋西部的亚洲海上涡轮机遭受了台风的破坏(Li等人2022)尽管几乎无法获得详细的损害评估和数据共享。为了实现拜登 - 哈里斯政府的目标,到2030年,有必要将海上风能开发扩大到美国飓风的美国地区并应对技术挑战(Musial等人。2023)。这种扩展需要了解系统鲁棒性的风险,改善和建立弹性,尤其是面对北大西洋越来越频繁的主要飓风(Vecchi等人)(Vecchi等人。2021)。到此为止,主持了两次面对面的研讨会。1)。当前的工程实践遵守国际电子技术委员会(IEC)标准,对于热带参考涡轮级(T级)涡轮机,该标准要求将参考风速从50增加到57 m s-1。此外,这些实践需要湍流的极端风速模型,该模型的塔和刀片的回流时间为50年,并且子结构的返回期为500年(例如,单波管和夹克; 61400-3 IEC 2019)。但是,对设计标准的这种调整可能无法完全涵盖飓风事件的复杂性或各种破坏性负载案例的复杂性。为了增强易受飓风易发的区域的涡轮弹性,需要对大气和海洋状况的更深入的理解和改进的建模。美国能源部(DOE)的能源效率和可再生能源办公室(EERE)旨在通过研讨会和协作工作来满足利益相关者的需求和研究优先事项。第一次会议于2023年6月在阿贡国家实验室举行,重点是在国家实验室,监管机构,学术界和工业之间进行对话(图第二次会议于2023年11月在国家科学基金会(NSF)国家大气研究中心(NCAR)举行,随后进行了研究进度,并确定了加强行业与科学社区之间合作的挑战。两次会议旨在解决大型海上风能部署的建模,观察和工程挑战,并指导EERE未来几年的研究方向。