图像字幕(自动生成图像的描述标题的任务)由于其潜力弥合视觉和语言理解之间的差距而引起了极大的关注。随着深度学习的进步,尤其是用于序列产生的特征提取和复发神经网络(RNN)的卷积神经网络(CNN),神经图像标题发生器在产生的字幕的质量和流利程度上都取得了重大进展。本文调查了图像字幕技术的演变,从传统模型到现代深度学习方法,包括使用变压器和多峰模型。我们讨论了关键组件,例如图像表示,字幕生成和注意机制,并检查大规模数据集和评估指标的作用。尽管取得了长足的进步,但在语义理解,上下文相关性和处理偏见等领域仍存在挑战。这项调查以研究目前的研究状态并概述了该领域的潜在方向,包括探索零射击学习,多模式集成以及改善字幕模型的概括。
小时候,我经常想知道人们的思想是如何工作的。在我在计算机科学和工程方面的培训中,我认为它的功能像发条一样,因此必须有一种算法。但是,在学习算法设计时,我遇到了逆问题,将人类解决问题的方式转化为计算机算法。这仅是针对基本问题的。对于人类来说,计算机/数学的简单性似乎极为困难。例如,对我们来说很难乘以大量,但对计算机来说很琐碎。相比之下,对于我们来说,对我们来说很简单的东西对于计算机/数学来说非常困难。当我学习AI作为课程的一部分时,这变得非常明显。我觉得我们需要研究自然智力的运作方式,然后才能真正地设计人工智能。研究计算神经科学是桥梁差距的自然发展。
由于开源软件包漏洞而引起的软件系统的复杂性日益增长,使软件漏洞检测成为关键的优先级。传统的脆弱性检测方法,包括静态,动态和混合方法,通常在高阳性速率和有限的效率方面挣扎。最近,基于图的神经网络(GNN)和变形金刚模型通过表示代码作为捕获语法和语义的图表来提高漏洞检测准确性。本文介绍了一个混合框架,结合了门控图神经网络(GGNN)和变压器编码器以利用多个图表表示:抽象语法树(AST),数据流程图(DFG),控制流程图(CFG)(CFG)和代码属性图(CPG)。GGNN提取图级特征,而变压器在图形编码数据中增强了顺序上下文理解。该模型使用这些功能来检测功能级代码段中的漏洞。评估我们在OWASP WebGoat数据集上的框架的评估证明了在五种主要漏洞类型中不同图形表示的有效性:命令注入,弱加密,路径遍历,SQL注入和跨站点脚本。实验结果表明,GGNN+CpG配置始终产生高度弱点的较高回忆,而GGNN+CFG在检测基于控制的基于控制的漏洞(例如命令注射)方面表现出色。这些发现突出了混合GNN-Transformer框架在增强网络安全应用程序的代码漏洞检测方面的潜力。GGNN和变压器模型的集成导致在所有漏洞类型中的准确性,精度,回忆和F1得分方面显着增强,每个图表表示对代码结构和脆弱性模式都有独特的见解。
摘要:在欧洲背景下,欧盟《人工智能法案》提案和《安全可信人工智能标准化要求》草案都将标准化与基本权利联系起来。然而,这些文本并没有提供任何指导方针来具体说明和详细说明人工智能标准与基本权利之间的关系、其含义或含义。本章旨在澄清这一关键的监管盲点。主要解决的问题是,在未来的《人工智能法案》的基础上,采用人工智能协调标准是否应该考虑到基本权利。我们认为,答案是肯定的。某些人工智能系统带来的高风险尤其与侵犯基本权利有关。因此,减轻此类风险涉及基本权利的考虑,这也是未来协调标准应该反映的。同时,必须解决对欧洲标准化进程的有效批评。最后,讨论了在正在进行的欧洲人工智能系统标准化中实际纳入基本权利考虑的问题。
在人工智能和机器学习时代,对高效、强大的硬件加速器的需求对于嵌入式系统和边缘设备的实时处理和低功耗至关重要。神经处理单元 (NPU) 旨在处理深度学习任务的高计算需求,其基准是其每秒执行大量操作的能力。评估 NPU 性能的主要指标是每秒万亿次操作 (TOPS),这是一种计算吞吐量度量,代表每秒万亿次操作。本文探讨了 TOPS 作为关键性能指标的作用,研究了它如何影响从自动驾驶汽车到移动设备等各个领域的 NPU 设计、优化和应用。此外,我们讨论了仅依赖 TOPS 的局限性,包括由于功率效率、内存带宽和特定于模型的要求不同而导致的性能差异。通过分析案例研究并将 TOPS 与其他指标进行比较,本研究旨在全面了解 TOPS 如何影响 NPU 开发以及对推进 AI 驱动技术的更广泛影响。
摘要从互联网技术和通信技术的快速发展中受益,行业互联网迅速上升。随着互联网技术的快速发展,网络安全变得越来越突出。此外,入侵攻击会导致系统故障或降低系统性能,因此入侵检测是确保系统可靠性的重要方面。针对运营过程中工业互联网面临的巨大安全风险,本研究提出了一种基于卷积神经网络的工业互联网故障检测模型,该模型最初通过卷积神经网络筛选了卷积神经网络的入侵攻击,并引入了粒子群群群优化算法,以识别筛查的入侵攻击。The experimental results demonstrated that when the training set size was 1600, the accuracy rates of random forest, K-mean clustering algorithm, convolutional neural network and improved convolutional neural network algorithms were 93.2%, 94.9%, 96.3%, and 98.6%, respectively, and the false alarm rates were 6.9%, 5.0%, 3.8%, and 2.1%, respectively.随机森林,K均值聚类,卷积神经网络和改进的卷积神经网络算法的均方根误差值分别为0.32、0.22、0.18和0.11。当训练集大小为800时,相应的F1值为0.81、0.84、0.87和0.98。该研究的结果表明,改进的算法模型优于其他策略,为在工业互联网中的应用提供了坚实的基础。
范围。过去十年中持续的深度学习革命带来了在各种数据集中受过培训的数亿个神经网络(NNS)。同时,最近的基础模型的兴起导致公开可用的神经网络模型数量迅速增加。单独拥抱面孔,有超过一百万个型号,每天增加数千个型号。结果,数据中包含的丰富知识,通过培训学到的抽象以及受过训练的模型的行为本身存储在训练有素的NNS的架构和参数中。尽管这种大量增长,但对处理模型权重的研究很少,很少被认为是数据模式。该研讨会旨在通过将已经与模型权重相互作用的分散的子社区汇集在一起,以建立一个围绕体重空间学习的社区,并将民主化模型权重作为适当的数据方式进行民主化。
