摘要:在医学诊断领域实施机器学习算法的趋势是必要且有意义的。然而,数据隐私已成为应用中的一大问题。本文使用联邦学习(FL)架构来处理隐私问题,并找到提高模型性能的方法。该研究结合 FedAvg FL 算法和 CNN 模型 EfficientNet 在脑肿瘤分类(MRI)数据集上训练模型。在实施算法之前,该研究对数据进行了一些预处理。然后,该研究使用 EfficientNet 进一步处理和识别图像,并使用 FedAvg 对客户端训练的模型进行加权平均。此外,该研究探索了优化器和损失函数,选择了更适合此任务的 AdamW 和交叉熵损失。最后,该研究深入了参数调整工作,绘制了一些曲线和表格来可视化结果。经过参数调整后,本文发现测试准确率高达 81.218%,所有客户端的平均训练准确率高达近 99%。另外,本文还讨论了不同CNN模型的实现条件,分析了它们在医学诊断领域的优缺点,为网络模型和算法的结合提供了一些思路。
摘要 - 今年,使用最广泛的技术框架之一缺乏特定的物联网(IoT)。专注于通信可靠性和对IPv6标准和互联网通信技术的可靠性,EfficityNet B7社交IoT网络满足了护理和适应性需求。尽管拍摄了高质量的照片,但在系统的培训期间却有一些损失,这需要时间。使用Evolution深度学习建议的这项工作以自动生成用于文本分类任务的EfficityNet B7功能框架。在基于有效网络B7的语言相似性分析模型的背景下,对所提出的方法进行了测试,以查看其是否有效。虽然字符级有效网络B7算法并未引起文本分类问题的关注,但本研究中提出的有效网络B7结构在数据分类任务中表现出了出色的性能。大量的测试表明,它们对中断更具弹性,并且可以影响众多有关用户隐私保护,框架含义和法律要求的语言和信息使用政策的组织。
皮肤癌是全球最常见的致命疾病之一。因此,皮肤癌的分类变得越来越重要,因为在皮肤癌的早期治疗更加有效。本研究的重点是使用效率网络结构的三种常见皮肤癌类型的皮肤癌分类,即基底细胞癌(BCC),鳞状细胞癌(SCC)和黑色素瘤。数据集进行了预处理,并且在以后的阶段合并之前,数据集中的每个图像都调整为256×256像素。然后,我们训练从EfficityNet-B0到EditiveNet-B7开始的所有类型的效率网络,并比较其性能。基于测试结果,所有受过训练的有效网络模型都能够在皮肤癌分类中产生良好的准确性,精度,回忆和F1得分。尤其是,我们设计的有效网络B4模型可实现79.69%的精度,81.67%的精度,76.56%的召回率,而79.03%的F1得分是最高的。这些结果证实,可以利用有效网络结构对皮肤癌进行分类。
排序。这不仅需要巨大的劳动力费用,而且还产生了各种质量的蔬菜,从而导致总体质量降低,否则可以占据优惠的市场价格。此外,以降低的成本获取和包装具有更高市场价值的蔬菜,这直接影响了总体销售价格,不适合大规模生产。与传统的手动检测,识别和分类技术相比,利用计算机愿景进行图像识别,检测和分类不仅可以提高效率,而且还可以提高准确性。目前,计算机视觉技术被广泛用于蔬菜和水果的分类,植物和作物害虫的鉴定以及不完整的片剂的识别,这些片剂可以迅速找到和识别检测中所需的特征;这实现了更有效和经济的提取。对评估农产品视觉质量的计算机视觉技术的探索是在生产的早期阶段进行的,从而产生了可观的结果。主要重点是检查谷物,干果,水果,鸡蛋和类似物品。这导致了值得称赞的结果。这还提供了新的想法和蔬菜图像识别方法的理论可行性。这可以节省人力和物质资源,从而降低人工成本,提高蔬菜分级的性能以及加快蔬菜分级的速度。近年来,随着图像识别领域的深度学习技术的重大突破,由VGGNET,GOGLENET,RESNET等代表的卷积神经网络模型不仅取得了重大成就(在广泛的计算机视觉挑战中取得了实现),而且还在众多的众多学者中实现了众多的众多学者,并在其他方面进行了分类和分类。因此,为了减少对蔬菜质量等级进行分类所需的人力,物质资源和成本,本文提出了一种基于深度学习的蔬菜质量分级方法,建立了蔬菜分级图像数据集,随后提出了改进的蔬菜质量级别的改进的有效网络模型(Ca-foricednet-CBAM)。
[2] 中,SVM 分类器和模糊 C 均值的组合已被用于检测脑肿瘤。为了获得大脑属性,该方法采用了灰度运行长度矩阵 (GLRLM)。SVM 分类器用于确定脑部扫描是否包含肿瘤。SVM 分类器利用 120 次脑部 MRI 扫描中的 96 次进行训练,然后使用剩余的 24 张图像进行测试。该方法在分类任务中获得了最高 91.66% 的准确率。[3] 中利用朴素贝叶斯分类器识别了脑肿瘤。对 50 次脑部扫描的评估发现总体准确率为 94%,肿瘤识别率为 81.25%,非肿瘤检测率为 100%。在这里,从分割的灰度脑部图片中得出了八个形态特征和三个强度特征来对肿瘤进行分类。朴素分类器是一种基于贝叶斯概率理论的监督机器学习算法。
可以通过在训练过程中逐步增加图像大小来进一步加速我们的培训。许多以前的作品,例如渐进式调整(Howard,2018),FixRes(Touvron等人,2019年)和混合匹配(Hoffer等人,2019年),在培训中使用了较小的图像尺寸;但是,它们通常对所有图像尺寸保持相同的正则化,从而导致准确性下降。我们认为,对不同图像大小保持相同的规则ization并不理想:对于同一网络,小图像大小会导致小网络小组,因此需要弱的正则化;反之亦然,较大的图像大小需要更强的正则化来对抗过度拟合(请参阅第4.1节)。基于这种见解,我们提出了一种改进的渐进学习方法:在早期的培训时期,我们以较小的图像大小和较弱的正则化(例如,辍学和数据增强)训练网络,然后我们逐渐增加图像大小并增加更强大的调节化。建立在渐进式调整的基础上(Howard,2018),但是通过动态调整正则化,我们的方法可以加快训练而不会导致准确性下降。