选定的测试运行 • 稳定状态温度 22.8 K • 供给压力 = 631 psig • 低压侧压力 = 10.8 psig • 质量流速 = 4.56 slpm • JT 出口处的估计质量 = 0.808 • 估计制冷功率 = 0.57 W(等温) • 氢液化率 = 0.08 g/min
有关资格、接受或拒绝申请、选择方式、取消部分或全部选择过程等。在这方面,不接受任何信函/临时查询。职位的填补完全由 CSIR-CECRI 主任 Karaikudi 根据候选人的适合性自行决定,如果由于不适合/候选人数量不足而导致某些职位未填补,则不会提出聘用要求。如有任何关于项目人员聘用的问题,请在办公时间(上午 09:00 至下午 05:30)拨打办公室电话 04565 - 241219/218,或发送电子邮件至 recruit@cecri.res.in。除上述办公室电话号码/电子邮件 ID 外,不接受其他电话/邮件。
有机电化学晶体管(OECTS)将离子转换为电信号,这使它们成为广泛的生物电子应用的有前途的候选人。,尽管他们承诺,但仍未完全了解其设备几何形状对性能的影响。在此,将两个不同的设备几何形状(顶部接触和底部接触OECT)根据其接触性,可重复性和开关速度进行比较。表明,底部接触设备的切换时间更快,而其顶部接触式对应器在略有降低的接触抗性和增加的可重复性方面表现出色。讨论了速度和可重复性之间这种权衡的起源,该速度和可重复性之间的权衡为特定应用程序提供了优化指南。
本期特刊旨在汇集高质量的论文,重点介绍各种可充电电池材料的最新发展,并重点介绍当今最重要和最有效的储能设备之一的科学和技术,即锂离子、锂硫、锂空气和钠离子电池。高性能电池技术被认为是通过大规模应用于电动汽车实现深度脱碳的关键因素。此外,通过大量关注推广可持续和可再生能源,可持续经济发展是可能的。这些间歇性能源系统的开发需要适当的储能方法,其中电池作为多功能储能设备发挥着重要作用。这些贡献提供了对一系列材料(电池的基本元素)的深入了解,其方法可以从纳米到宏观。在这些电池中,不仅阴极和阳极材料,而且其他组件(如电解质、添加剂和隔膜)在确定其能量密度、寿命、功率能力、安全性和成本方面也起着至关重要的作用。通过引入源于特殊形貌和结构、适宜的颗粒尺寸、表面工程、掺杂和复合形成等各种功能来设计和合成材料以获得稳定的电化学性能,人们对此给予了特别的关注。因此,对电池材料的广泛研究在生产未来可持续发展的先进可充电电池中发挥着越来越重要的作用。元素掺杂取代锂或氧位已成为提高层状正极材料电化学性能的一种简单有效的技术。与单一元素掺杂相比,Wang 等 [1] 在研究 Na + /F − 阳离子/阳极共掺杂对 LiNi 1/3 Mn 1/3 Co 1/3 O 2 的结构和电化学性能的影响方面做出了前所未有的贡献。三维和二维势图的第一性原理计算表明,Na 掺杂可以降低势阱并增加 Li + 离子的去除速率 [2]。采用溶胶-凝胶法,以乙二胺四乙酸 (EDTA) 为螯合剂,合成了共掺杂的 Li 1-z Na z Ni 1/3 Mn 1/3 Co 1/3 O 2-z F z (z = 0.025) 和纯 LiNi 1/3 Co 1/3 Mn 1/3 O 2 材料。结构分析表明,Na + 和 F − 掺杂剂分别成功掺入 Li 和 O 位。共掺杂使 Li 板间距更大、阳离子混合程度更低、表面结构更稳定,从而大大提高了正极材料的循环稳定性和倍率性能。Na/F 共掺杂电极在 1C 倍率下提供 142 mAh g −1 的初始比容量(0.1C 时为 178 mAh g −1),并且在 1C 倍率下经过 1000 次充电-放电循环后仍能保持其初始容量的 50%。Bubulinca 等人 [3] 对采用优化的无粘合剂技术制备的二元和三元自立复合正极材料进行了比较研究。使用聚(乙二醇)对异辛基苯基醚(Triton X-100)作为表面活性剂,制备了二元“岛桥”LiMn2O4/碳纳米管(LMO/CNT)复合材料和三元“构造板-岛桥”LiMn2O4/CNTs/石墨烯仿生结构。在
Det-Tronics 系列电化学气体传感器旨在持续监测大气中是否存在潜在危险气体泄漏或氧气耗尽。有多种型号可用于检测各种浓度范围内的各种气体类型。传感器外壳内的变送器电路可产生与目标气体浓度成比例的 4 至 20 毫安输出信号。这些传感器与 R8471 系列气体控制器、Infiniti 变送器、Eagle 数字通信单元 (DCU) 或任何其他能够监测 4 至 20 毫安直流输入并提供校准功能的监测设备兼容。传感器设计用于危险环境,并可用作防爆或本质安全设备。
航空电子设备的一般组件,以及航空电子设备中使用的印刷电路板 (PCB) 的紧凑拓扑。电子设备,尤其是重要设备的任何复杂化都会导致对可靠性的要求增加。鉴于飞机设备几乎一直在极端条件下运行,即使是最小的故障概率也是不可接受的。这就是为什么航空电子设备的物理可靠性如此重要的原因。显著降低航空电子设备物理可靠性的因素之一是电化学迁移。电化学迁移可能导致航空电子设备运行失败,甚至完全失效,甚至导致飞机起火。现在对电化学迁移的研究很少。仅确定了导致电化学迁移的因素和电化学迁移的后果,现有的解决方法要么无效,要么会显著增加飞机设备的重量和成本,从而使其使用变得不切实际。本文介绍了电化学迁移运动学、其发生的后果以及发生方式的实验研究
Lee,C。&Yan,Q。 (2021)。 氮对氨的电化学减少:进步,挑战和未来前景。 电化学中的当前意见,29,100808-。 https://dx.doi.org/10.1016/j.coelec.2021.100808Lee,C。&Yan,Q。(2021)。氮对氨的电化学减少:进步,挑战和未来前景。电化学中的当前意见,29,100808-。https://dx.doi.org/10.1016/j.coelec.2021.100808https://dx.doi.org/10.1016/j.coelec.2021.100808
GraphDiyne(GDY)的研究在出生后的头十年中经历了快速增长。作为一种新的二维原子晶体,GDY具有由SP和SP 2杂交碳原子组成的独特结构,并且对科学家表现出许多前所未有的内在特性。由于GDY的固有特征,在广泛的研究领域中发现了一些新现象和特性。gdy在基本和应用科学方面取得了重大突破,形成了创新的科学概念,并取得了巨大的成就。在这些领域中,电化学能源存储和转换是基本应用研究的两个重要且令人印象深刻的领域。本综述着重于将GDY用作电化学能源存储和转换的高级电化学接口。它首先引入了GDY作为电化学接口的优势和固有的兼容性。然后,GDY在电化学存储和转换方面的最新成就得到了评论,我们可以从中欣赏GDY作为交替和创新电化学界面的重要材料的固有优势。最后,讨论了对电化学能源存储和转换的GDY界面的挑战和进一步观点的新见解,旨在促使深入研究及其在实际应用中的表现。
li,X.,li,J.,Yun,J.,Wu,A.,Gao,C。&Lee,S.W。(2022)。连续的热再生电化学系统,用于将低级热量转换为电力。Nano Energy,101,107547-。https://dx.doi.org/10.1016/j.nanoen.2022.107547https://dx.doi.org/10.1016/j.nanoen.2022.107547
重金属离子在人体中的积累会造成严重损害。这些离子的跟踪和去除是非常必要的,并且由于快速响应,高灵敏度和低但较大的检测范围而通过电化学传感器完成。在这方面,电极的表面在电化学性能中起关键作用。在这里,我们提出了过去对工作进行的详细回顾,以通过测试碳纳米颗粒(即石墨烯或石墨烯衍生物及其与其他纳米颗粒的组合。将石墨烯或石墨烯与其他有机或无机材料混合形成纳米复合材料,有助于检测各种重金属离子,例如镉,汞,铜,铜,铅,铅,锌等。在自来水或食品中。本评论文章包括该领域的综合方法,工作机制,优势,缺点和未来招股说明书。©2025 Bumi Publikasi Nusantara