飞翼无人机的开发是一个反复的过程,其中考虑和分析了各个领域。飞翼无人机的机身采用 3D 打印,以便快速制作原型和重新配置,以便在短时间内测试不同的有效载荷配置。机翼和翼梢小翼由高密度泡沫制成,以保持重量并提供足够的耐用性(图 72)。初始翼型测试首先在 xflr5 软件(第 4 章:翼型选择)中利用计算流体动力学 (CFD) 进行,然后在 Solidworks(第 5 章:翼型分析)中进一步分析。经过分析,选择 Eppler 344 作为根翼型,Eppler 325 作为翼梢翼型。翼梢小翼是 GOE 330 翼型。利用 Solid Works 中的 CFD(第 8 章:最终飞机设计)对最终模型进行了分析,发现足以满足要求。通过在肯尼索州立大学亚音速风洞中测试比例模型(第 10 章:风洞测试),确认了 CFD 结果。这些测试的结果证实了通过 CFD 获得的结果。
Paul Atkinson Dalhousie大学(Dalhousie Medicine New Brunswick)弗洛伊德·贝塞勒博士北英属哥伦比亚郡北部哥伦比亚郡杰夫·布鲁巴赫大学博士哥伦比亚博士哥伦比亚哥伦比亚博士赫伯特·陈大学博士哥伦比亚博士英属哥伦比亚博士Marcel Emond大学Laval博士Chrystal Horwood纪念大学多伦多Jacques Lee大学博士Andrew Macpherson University of Andrew Macpherson University of Britisncobia哥伦比亚大学柯克·马吉·达尔豪西大学博士约翰·泰勒(John Taylor)不列颠哥伦比亚大学渥太华克里斯蒂安·瓦兰科特(Christian Vaillancourt)博士Paul Atkinson Dalhousie大学(Dalhousie Medicine New Brunswick)弗洛伊德·贝塞勒博士北英属哥伦比亚郡北部哥伦比亚郡杰夫·布鲁巴赫大学博士哥伦比亚博士哥伦比亚哥伦比亚博士赫伯特·陈大学博士哥伦比亚博士英属哥伦比亚博士Marcel Emond大学Laval博士Chrystal Horwood纪念大学多伦多Jacques Lee大学博士Andrew Macpherson University of Andrew Macpherson University of Britisncobia哥伦比亚大学柯克·马吉·达尔豪西大学博士约翰·泰勒(John Taylor)不列颠哥伦比亚大学渥太华克里斯蒂安·瓦兰科特(Christian Vaillancourt)博士
本书将是《管理和组织认知新视野》系列的第六卷。前几卷探讨了战略不确定性、创新以及 MOC 研究的方法进步和挑战等主题。2023 年的卷将包括一系列跨学科的贡献,这些贡献反映了使用物理、概念和数字认知辅助工具进行管理认知和战略决策的理论基础。我们采用认知辅助这一术语的最广泛含义,即任何有目的地用作感官输入以影响战略背景下的认知状态或过程的物理或概念制品。这些范围可以从高度结构化的战略模拟或游戏到战略工作中使用的视觉工具,例如概念模型、图纸、图片、框架、粘土和乐高积木,再到使用图像、声音、气味或物理存在来指导和丰富从事战略工作和战略决策的管理者的认知。目标和范围 战略工作不仅基于语言,还基于认知辅助工具,这些工具有助于个人和团队之间、组织内部和组织之间以及与外部受众之间的理解和传递。战略工作中的沟通受到语言使用模糊性、我们的思维方式和个人信念的限制(Keefe,2000 年)。另一个挑战是,组织中的群体很容易发展出特定群体的口头和图形对话,而局外人不容易理解(Fay、Garrod、Lee 和 Oberlander,2003 年)。此外,通过语言进行交流需要对互动限制敏感的轮流发言(Healey 等人,2007 年)。多年来,战略学者和实践者已经设计和研究了大量语言以外的战略工作辅助工具。它们包括物理和数字工具和人工制品,例如框架、模拟、战争游戏、艺术、戏剧、严肃游戏,或粘土、乐高或原型等人工制品,以应对复杂性并阐明想法和思想 (Bačić, & Fadlalla, 2016; Roos, Victor, & Statler, 2004)。其他示例包括使用草图、符号、图片和数字人工制品和工具 (Eppler & Platts, 2010; Pershina et al., 2019; Marion & Fixson, 2020)。动觉任务可以成为策略工作中基于艺术的学习过程的一个很好的起点,因为它们倾向于减少抑制 (Nissley, 2010)。通过参与幻想和游戏,游戏有助于表达积极和消极的情绪(Kolb & Kolb,2010),使创造处于一种与工作场所不同的临界状态(Johnson et al.,2010)。它为团队提供了一个环境来识别和争论有争议或关键的问题(Heracleous & Jacobs,2005)。不同的材料甚至可以与更深层次的人类情感联系起来(Taylor & Statler,2014),可以作为
Hadley Max 500天设计参考任务(DRM)至Apollo 15 Hadley- Apennine地区:( 5。通过原位迈co-Architecture降低了上质量的需求)。L. Rothschild 1,J。头2,D。R. Scott 2,B。Botwright 2,C。Maurer 3,D。Eppler 4,R。Creel 5,R。Martin 1,W。Mickey 2,D。Fryd 2,M。Daniti 2,C。Wu 2。1 NASA AMES研究中心,CA山景城,Providence RI 2。 3 Redhouse Studio,Cleveland OH,4 San Antonio Mountain Consulting,休斯敦德克萨斯州5号,阿拉巴马州亨茨维尔(NASA MSFC ret。))1 NASA AMES研究中心,CA山景城,Providence RI 2。3 Redhouse Studio,Cleveland OH,4 San Antonio Mountain Consulting,休斯敦德克萨斯州5号,阿拉巴马州亨茨维尔(NASA MSFC ret。)(james_head@brown.edu)。致力于解决上级问题的解决方案:我们从Hadley Max 500天设计参考任务(DRM)概念背景[1]开始,并开始呼吁Apollo 15(A15)任务实现目标和目标,结合了A15 Mission Mission Mission成果的扩展目标和目标,从A15 Mission Crounse和最新的地区地球地球地球层面和目标[2]结合使用。然后,我们确定了Hadley Max DRM [3]的科学兴趣区域(ROSI),并使用了这些专业要求来定义任务体系结构[4],以及更详细的Hadley Max Max Maxs Design和Traverse计划活动[5]。在这里,我们解决了长期持续和人类在月球上的最重要问题之一,并同时进行了科学探索成功:使技术能够减轻支持基础和基础勘探所必需的巨大且连续的质量要求的关键[4] [4]。在这里,我们概述了我们在“ Myco-Architecture”以及未来目标上进步的演变。1。2。3。4。5。In order to help alleviate this “upmass roadblock”, we have pursued two promising technolo- gies: 1) Myco-Architecture [6-9], where building materi- als can be “grown in situ ” in order to significantly mini- mize upmass penalties, and 2) Inflatable Structural Ele- ments [10], in which low-volume, low-mass inflatables can be combined with Myco-architecture以产生广泛的原位外壳。定义所需的栖息地,外壳和相关的建筑要素:作为重新检查的建筑要素的基准,我们呼吁Hadley Max Max DRM架构[4]和Traverse Planning [5]研究产生这些基线元素的研究。土地垫(LP):对于人类和机器人任务;像helo垫,平坦,没有土壤反冲洗污染物。初始基础结构(IBS):生活和工作的hab itat;遵循有登录模块(LM)的初始阶段。进化基础结构(EB):较大规模,工作/生活活动的分离;现场科学活动; IBS演变为尘埃液压结构。前哨基地:远程科学基础(RSB):以IBS为模型,但位于距离着陆点> 10公里的半径范围内。最多需要大约5个RSB才能深入到原位科学活动。增加数量的精确率。“小马快车”站(PEX):这些是农历“幼崽帐篷”,它将是远程科学基地(RSB)的前体,然后是通往最终远程科学基地(RSB)的地球日睡眠站。样品存储站,地球物理站;可以通过CLPS任务收集/样本进行重新供应。6。
[1] Harald Köpping Athanasopoulos。2019 年。《月球村和太空 4.0:‘开放概念’是开展太空活动的新方式吗?》太空政策 49(2019 年),101323。[2] Edward Bachelder、David H Klyde、Noah Brickman、Sofia Apreleva 和 Bruce Cogan。2013 年。融合现实以增强飞行测试能力。在 AIAA 大气飞行力学 (AFM) 会议上。5162。[3] Leonie Becker、Tommy Nilsson、Paul Demedeiros 和 Flavie Rometsch。2023 年。增强现实服务于人类在月球上的操作:来自虚拟试验台的见解。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1-8。 [4] Loredana Bessone、Francesco Sauro、Matthias Maurer 和 Matthias Piens。2018 年。月球及以外地区实地地质探索的测试技术和操作概念:欧空局 PANGAEA-X 活动。载于欧洲地球物理联合会大会摘要。4013 年。[5] D Budzyń、H Stevenin、Matthias Maurer、F Sauro 和 L Bessone。2018 年。欧空局为月球太空行走模拟制作月球表面地质采样工具原型。载于第 69 届国际宇航大会 (IAC),德国不来梅。[6] Andrea EM Casini、Petra Mittler、Aidan Cowley、Lukas Schlüter、Marthe Faber、Beate Fischer、Melanie von der Wiesche 和 Matthias Maurer。2020 年。欧空局的月球模拟设施开发:LUNA 项目。空间安全工程杂志 7, 4 (2020),510–518。[7] David Coan。2022 年。NEEMO 22 EVA 概述与汇报。技术报告。[8] Brian E Crucian、M Feuerecker、AP Salam、A Rybka、RP Stowe、M Morrels、SK Mehta、H Quiriarte、Roel Quintens、U Thieme 等人。2011 年。ESA-NASA“CHOICE”研究:在南极内陆康科迪亚站过冬,作为太空飞行相关免疫失调的类似物。在第 18 届 IAA 人类进入太空研讨会上。[9] Enrico De Martino、David A Green、Daniel Ciampi de Andrade、Tobias Weber 和 Nolan Herssens。 2023. 模拟低重力环境下的人体运动——弥合太空研究与地面康复之间的差距。神经病学前沿 14 (2023),1062349。[10] Gil Denis、Didier Alary、Xavier Pasco、Nathalie Pisot、Delphine Texier 和 Sandrine Toulza。2020. 从新太空到大太空:商业太空梦想如何变成现实。宇航学报 166 (2020),431–443。[11] Dean B Eppler。1991. 月球表面作业的照明限制。 NASA STI/Recon 技术报告 N 91(1991),23014。[12] Barbara Imhof、Waltraut Hoheneder、Stephen Ransom、René Waclavicek、Bob Davenport、Peter Weiss、Bernard Gardette、Virginie Taillebot、Thibaud Gobert、Diego Urbina 等人。2015 年。月球行走与人机协作任务场景与模拟。在 AIAA SPACE 2015 会议和博览会上。4531。[13] Curtis Iwata、Samantha Infeld、Jennifer M Bracken、Melissa McGuire、Christina McQuirck、Aron Kisdi、Jonathan Murphy、Bjorn Cole 和 Pezhman Zarifian。2015 年。并行工程中心基于模型的系统工程。在 AIAA SPACE 2015 会议和博览会上。4437。[14] Juniper C Jairala、Robert Durkin、Ralph J Marak、Stepahnie A Sipila、Zane A Ney、Scott E Parazynski 和 Arthur H Thomason。2012 年。在 NASA 中性浮力实验室进行 EVA 开发和验证测试。第 42 届国际环境系统会议 (ICES)。[15] Hyeong Yeop Kang、Geonsun Lee、Dae Seok Kang、Ohung Kwon、Jun Yeup Cho、Ho-Jung Choi 和 Jung Hyun Han。2019 年。跳得更远:在失重沉浸式虚拟环境中向前跳跃。2019 年 IEEE 虚拟现实与 3D 用户界面 (VR) 会议。699–707。https://doi.org/10.1109/VR.2019.8798251 [16] Lin-gun Liu。 2022. 火星和月球上的水。陆地、大气和海洋科学 33, 1 (2022), 3。[17] Erin Mahoney。2022. 美国宇航局将在亚利桑那州沙漠进行阿尔特弥斯月球漫步练习。https://www.nasa.gov/feature/nasa-to-practice-artemis- moonwalking-roving-operations-in-arizona-desert