在前身项目上构建,我们的指导恢复系统也被推到了一个新的水平。将这种系统首先集成到功能齐全的发声火箭中,旨在将这项技术从令人印象深刻的演示器推向飞行验证的硬件。在葡萄牙的Euroc的Euroc版本中实现了这个目标,该系统首次启动到3000m,偏离不到2%,这要归功于先前开发的空气中断系统 - 然后在10分钟长的自动引导下降中进行了测试。
同步定位与地图构建现在已被许多应用广泛采用,研究人员已就此主题撰写了大量文献。随着智能设备的出现,嵌入式摄像头、惯性测量单元、视觉 SLAM (vSLAM) 和视觉惯性 SLAM (viSLAM) 正在实现新颖的一般公共应用。在此背景下,本文对流行的 SLAM 方法进行了回顾,重点关注 vSLAM/viSLAM,包括基础和实验层面。它首先对现有的 vSLAM 和 viSLAM 设计进行结构化概述,然后对十几种主要的最先进方法进行新的分类。对 viSLAM 发展的历史回顾突出了历史里程碑,并将较新的方法归类。最后,针对城市环境中使用手持设备进行行人姿势估计的用例,通过实验评估了 vSLAM 的性能。使用 EuRoC MAV 数据集和对应于城市行人导航的新视觉惯性数据集比较了五种开源方法 Vins-Mono、ROVIO、ORB-SLAM2、DSO 和 LSD-SLAM 的性能。对计算结果的详细分析确定了每种方法的优缺点。从全球来看,ORB-SLAM2 似乎是解决城市行人导航挑战最有希望的算法,使用两个数据集进行了测试。
摘要尽管有望在视觉和机器人社区中进行大满贯研究,这些研究从根本上维持了智能无人系统的自主权,但视觉挑战仍然严重威胁其强大的操作。现有的大满贯方法通常集中在特定的挑战上,并通过复杂的增强或多模式融合来解决问题。然而,它们基本上仅限于特定场景,并具有非量化的理解和对挑战的认识,从而导致性能下降,并且具有较差的概括,并且(或)具有冗余机制的冗余计算。为了推动Visual Slam的边界,我们提出了一个完全计算可靠的评估模块,称为CEMS(SLAM的挑战评估模块),以基于明确的定义和系统分析,以进行一般视觉感知。它将各种挑战分解为几个共同方面,并使用相应的指标评估退化。广泛的实验证明了我们的可行性和表现不佳。与注释地面真相相比,所提出的模块的一致性为88.298%,与SLAM跟踪性能相比,强大的相关性为0.879。此外,我们根据CEMS显示了具有更好性能的CEM的原型大满贯,并且第一个全面的CET(挑战评估表)(EUROC,KITTI等)对各种挑战的客观和公平评估。我们使其在线提供,从而在我们的网站上受益。
本文旨在介绍Eurocode 2 [1]的附件J的内容:“使用CFRP的现有混凝土结构的加固”。 div>这是第一次通过信息丰富的附件引入CFRP附加的增援尺寸。 div>附件J考虑了两种不同的粘附加固技术:外部粘附的加固(EBR),包括将层压板或CFRP组织粘贴到要加固的混凝土元素的表面,以及在滚动或CFRP中插入涂层中的钢筋组成的钢筋组成。 div>作为附件J本身是一种新颖性,本文介绍了其内容及其与所有必要方面相关的历史,以设计CFRP增强系统的混凝土结构。 div>
[AAR] Scott Aaronson。量子信息科学简介注释。url:https://www.scottaaronson.com/qclec.pdf(cit。p。 2)。[BB13] Rachid El Bansarkhani和Johannes Buchmann。“基于晶格的签名方案的改进和有效的影响”。in:Cryptog -raphy的选定地区 - SAC 2013 - 第20届国际会议,加拿大卑诗省BUNBAN,2013年8月14日至16日,修订了选定的论文。ed。Tanja Lange,Kristin E. Lauter和Petr Lisonek。 卷。 8282。 计算机科学中的注释。 Springer,2013年,pp。 48–67。 doi:10.1007/978-3-662-43414-7 \ _3。 url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。 p。 6)。 [BG14] Shi Bai和Steven D. Galbraith。 “基于学习错误的签名改进的压缩技术”。 in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。。 程序。 ed。 Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Tanja Lange,Kristin E. Lauter和Petr Lisonek。卷。8282。计算机科学中的注释。Springer,2013年,pp。48–67。doi:10.1007/978-3-662-43414-7 \ _3。url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。p。 6)。[BG14] Shi Bai和Steven D. Galbraith。“基于学习错误的签名改进的压缩技术”。in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。程序。ed。Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Josh Benaloh。卷。8366。计算机科学中的注释。Springer,2014年,pp。28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。28–47。doi:10.1007/978- 3- 319-04852-9 \ _2。URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。p。 6)。[bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。“混合密钥封装机制和身份验证的钥匙交换”。:量词后密码学的国际会议。url:p。 2)。Joppe W. Bos,Leo Ducas,Eike Kiltz,TranèdeLepoint,Lyubashevsky Badadim,John M. Schvanck,Peter Schwabe,Gregory Seiler和DamienStehlé。“晶体-Kyber。in。 2018 IEE欧洲研讨会和隐私,欧元和P 2018,英国伦敦,2018年4月24日至26日。IEEE,2018年,pp。 353–367。 doi:10.1109/eurosp.2 url:https://也是如此。 org/1109/eUROSP.2 p。 7)。 Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。 ntru - 提交NIST Quantum项目。 https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。IEEE,2018年,pp。353–367。doi:10.1109/eurosp.2url:https://也是如此。org/1109/eUROSP.2p。 7)。Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。ntru - 提交NIST Quantum项目。https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。https://ntru.org/f/ntru-2019030.pdf2019(cit。p。 7)。[DN12] Leo Ducases和Phong Q. Nguyen。in:加密技术的进展 - Asiacrypt 2012处理。ed。Xiaoyun Wang和Kazue Sako。卷。7658。阅读计算机科学笔记。Springer,2012年,pp。415–432。doi:10.1007/978-34-642-34961-4 \ _2url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。p。 7)。处理。ed。[GLP12]TimGüneysu,Vadim Lyubashevsky和ThomasPöppelmann。“基于晶格的密码学:嵌入式系统的签名方案”。in:加密硬件和嵌入式系统 - CHES 2012-11届国际研讨会,比利时,比利时,2012年9月9日至12日。由伊曼纽尔·普鲁(Emmanuel Prou)和帕特里克·舒蒙特(Patrick Schaumont)作者。卷。7428。计算机科学中的注释。Springer,2012年,pp。530–547。DOI:10.1007/978-3-642-33027-8 \ _31。url:https://doi.org/10.1007/978-3-642-33027-8%5C_31(cit。p。 7)。[GNR10] Nicolas Gama,Phong Q. Nguyen和Oded Regev。“使用treme修剪的晶格枚举”。in:密码学的进展 - 2010年Eurocrypt。ed。henri Gilbert。柏林,海德堡:斯普林格柏林海德堡,2010年,pp。257–278(cit。p。 4)。[HHK17] Dennis Hofheinz,KathrinHövelmanns和Eike Kiltz。“对富士基 - 奥卡本转换的模块化分析”。在:密码学理论 - 第15届国际会议,TCC 2017,美国马里兰州巴尔的摩,2017年11月12日至15日,会议记录,第一部分。ed。Yael Kalai和Leonid Reyzin。 卷。 10677。 计算机科学中的注释。 Springer,2017年,pp。 341–371。 doi:10.1007/978-3-319-70500-2 \ _12。 URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。Yael Kalai和Leonid Reyzin。卷。10677。计算机科学中的注释。Springer,2017年,pp。341–371。doi:10.1007/978-3-319-70500-2 \ _12。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。p。 6)。