图1 MNI152空间中RSFMRI指标和QSM图像的处理管道的概述。从QSM图像中提取的静脉中,在天然空间中生成了距离图和传播直径图。然后将图像注册到MNI152空间。The top row depicts the rsfMRI metrics in MNI152 space: sagittal view of the amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), Hurst Exponent (HE), Coherence [Coherence (Cohe)-Regional Homogeneity (ReHo)], Kendall's Coefficient Concordance (KCC)-ReHo and一个参与者的特征向量中心(EC)值。底部行:来自天然空间中同一参与者的定量敏感性映射(QSM)图像,从容器分割档案中(阈值= 0.5;天然空间),所得的部分体积(PV;第二行)和直径图(第三行)(第三行)。PV和直径图排除了所有静脉<0.3 mm。距离图和传播直径图分别从PV和天然空间中的直径图计算出来。距离> 6.7 mm的组织体素。地图已注册到MNI152空间,并仅限于GM(第二行和第三行的最后一列)。
慢性期中风患者的手部功能改善通常在 6 个月内达到平台期。脑机接口 (BCI) 引导的机器人辅助训练已被证明可有效促进慢性中风患者的上肢运动功能恢复。然而,其背后的神经可塑性变化尚不清楚。本研究旨在探讨 20 次 BCI 引导的机器人手训练后全脑神经可塑性的变化,以及这些变化是否能在 6 个月的随访中保持。因此,对 14 名慢性中风患者进行了探讨,探讨了训练前、训练后立即和训练后 6 个月的临床改善和神经系统变化。通过动作研究手臂测试 (ARAT) 和 Fugl-Meyer 上肢评估 (FMA) 评估上肢运动功能,并使用静息态功能性磁共振成像评估神经系统变化。重复测量方差分析表明,FMA(F [2,26] = 6.367,p = 0.006)和 ARAT(F [2,26] = 7.230,p = 0.003)均发现了长期运动改善。基于种子的功能连接分析表明,在同侧运动区域(初级运动皮层和辅助运动区)和对侧区域(辅助运动区、运动前皮层和顶上小叶)之间观察到显著的 FC 调节,并且这种影响在 6 个月后仍然持续。fALFF 分析表明,局部神经元
图1。在这项研究中,我们系统地比较了从静止状态fMRI时间序列量化动力学模式的不同方式,重点介绍了局部区域动力学和跨四个神经精神疾病的成对耦合的统计。A.对于给定的静止状态fMRI体积(i),皮层和亚皮层分为各个区域,从中提取体素平均的粗体信号时间序列(II)。从这些数据中量化动力学模式的两种关键方法是:(iii)测量单个大脑区域动力学的特性(绿色);或(iv)计算两对区域之间的统计依赖性(粉红色和蓝色)。B.为了评估fMRI时间序列数据集的不同类型的动态表示的性能(用于识别疾病与神经活动的相关变化),我们包括了四个源自两个开放式访问数据集的神经精神病学示例:UCLA CNP LA5C研究[50]和Abide II/II/II/II/II/II II/II研究[51,52,52,52,64)两个队列中的每个队列还包括用于比较的认知健康对照(UCLA CNP n = 116,Abide n = 578)。C.对于从fMRI数据集提取的每种动力结构(即,对于数据的每个基于功能的“表示”),我们计算了封装各种活动属性范围的可解释的时间序列特征。使用一组25个时间序列特征(Catch22特征集[65]以及平均值,SD和FALFF)从每个大脑区域量化了局部动力学特性。使用一组成对相互作用(SPI)的一组统计量对所有对区域之间的相互作用进行了量化,该统计数据包括PYSPI软件包中的代表性子集[29]。值。D.我们使用线性SVM分类器适合表示静止状态fMRI特性的五种不同方法来评估每种神经精神疾病的病例对照性能的性能:(i)所有25个单个区域序列特征在单个区域,一个区域,一个区域,一个区域; (ii)单个时间序列功能的全脑图,功能; (iii)所有25个单变量时间序列特征的全脑图,一个uni_combo; (iv)使用一个SPI,FC跨所有区域对的功能连接(FC)网络; (v)FC以及所有25个单变量的时间序列特征,该功能从所有大脑区域(UNI_COMBO)计算出,称为FC_COMBO。