目标:我们使用深度卷积神经网络 (DCNN) 对基于稳态视觉诱发电位 (SSVEP) 的单通道脑机接口 (BCI) 中的脑电图 (EEG) 信号进行分类,该接口不需要用户进行校准。方法:EEG 信号被转换为频谱图,并作为输入,使用迁移学习技术训练 DCNN。我们还修改并应用了一种通常用于语音识别的数据增强方法 SpecAugment。此外,为了进行比较,我们使用支持向量机 (SVM) 和滤波器组典型相关分析 (FBCCA) 对 SSVEP 数据集进行了分类。结果:从微调过程中排除评估用户的数据后,我们使用较小的数据长度(0.5 秒)、仅一个电极(Oz)和具有迁移学习、窗口切片(WS)和 SpecAugment 时间掩码的 DCNN,对来自开放数据集的 35 名受试者实现了 82.2% 的平均测试准确率和 0.825 的平均 F1 分数。结论:使用单个电极和较小的数据长度,DCNN 结果优于 SVM 和 FBCCA 性能。迁移学习提供的准确率变化很小,但使训练速度更快。SpecAugment 实现了小幅性能改进,并成功与 WS 结合,获得了更高的准确率。意义:我们提出了一种使用 DCNN 解决 SSVEP 分类问题的新方法。我们还修改了语音识别数据增强技术并将其应用于 BCI 环境中。所提出的方法在数据长度较小且只有一个电极的 BCI 中超越了 FBCCA 和 SVM(更传统的 SSVEP 分类方法)所获得的性能。这种类型的 BCI 可用于开发小型快速系统。
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。