图3:生成验证者的例证,即GenRM和GenRM-Cot。给出了一个问题和候选解决方案,genRM直接对llm进行了填补,以回答“答案正确(是/否)吗?”的问题。通过sft对对应于“是”或“否”的下一步响应。在推断期间,通过提取“是”令牌(4)的概率获得验证者分数。相比,GenRM-COT FINETUNES llm在产生最终的是/否代币之前产生验证链(COT)的基本原理。在测试时间时,我们采样了多个COT理由,并使用多数投票来计算“是”的平均概率,从而使GenRM-COT能够利用其他推理计算以更好地验证。
传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。
尽管人工智能 (AI) 革命不断,但由于特征空间异构、样本量有限且缺乏可行的迁移学习,深度学习在表格数据方面尚未取得很大成功。由大型语言模型 (LLM) 驱动的生成式人工智能新时代为各种数据和领域带来了前所未有的学习机会。本文研究了 LLM 应用程序编程接口 (API) 和 LLM 迁移学习在表格数据分类中的有效性。LLM API 使用标记数据和指令响应输入文本提示,而迁移学习则针对目标分类任务对 LLM 进行微调。本文提出了一种端到端的 LLM 微调,以在不存在大型预训练表格数据模型来促进迁移学习的情况下,在十个基准数据集上展示跨数据迁移学习。所提出的 LLM 微调方法在具有少于十个特征(表格数据集的标准特征大小)的表格数据上的表现优于最先进的机器和深度学习方法。迁移学习方法仅使用其他深度学习或基于 API 的解决方案的计算成本的一小部分,同时确保具有竞争力或卓越的分类性能。
经常会产生不一致的解释,并在非常相关的问题上进行解释(Chen等人,2023b)。实际上,LLMS甚至常常难以回答同一问题的重塑(Sclar等人,2023;张等。,2023)。目前尚不清楚适应LLM的流行方法,例如从人类反馈中监督的填充或加强学习能够解决此问题。我们通过引入解释 - 一致性登录(EC-FINETUNING)来解决此问题。ec-芬特列列列列斯在合成数据上的LLM精确构建以包含一致的规定。我们从一个问题解释对开始(例如,麻雀可以飞吗?”,“所有的鸟都可以飞”),产生一组相关问题(例如,“可以飞翔?”),然后回答与初始解释一致的相关问题(例如,“所有鸟类都可以飞行,以便企鹅可以飞”)。我们通过提示LLM来生成综合数据,这可能与解释LLM相同或不同。我们将EC-FINETIND应用于提问数据集,并发现它在四个芬口数据集中将自然语言解释的一致性提高了10.0%,也将七个分发数据集的概括( +4.5%相对)概括为七个未见到的数据集( +4.5%)。这表明EC-Finetuning通常对于帮助用户从其解释中构建LLM的心理模型很有用(见图1)。