‒ 1024 pixel SPAD array (32×32 pixel layout) ‒ Time-resolved and photon counting modes ‒ In-pixel TDC with 55ps timing resolution and ≈200ps FWHM instrument response function (IRF) ‒ Low median dark count rate ‒ Up to 700kfps transfer to PC (bit-depth dependent) ‒ Sync input from light source (user programmable) - 同步输出到例如光源(用户可编程频率) - 从扫描系统接受的输入以形成更高分辨率的图像
*通讯作者:nima.gorji@tudublin.ie摘要 - X射线衍射(XRD)映射是一种非破坏性计量技术,可以通过热机械应力重建在硅晶片上引起的经线的重建。在这里,我们使用基于X和Y方向的一系列线扫描以及同一样品的不同90度旋转的方法绘制了晶圆的扭曲。这些线扫描从晶圆的表面收集摇摆曲线,记录由于表面不良导致的衍射角(ω)偏离了布拉格角。表面经线通过诱导测得的衍射角与参考角度角度(ω -ω0)和摇摆曲线扩展(FWHM)之间的差异来反映XRD测量。通过收集和整合摇摆曲线(RCS)和FWHM从整个表面和晶圆的多个旋转范围扩大,我们可以生成表面函数f(x)的3D地图和角度的不良方向(Warpage)。经线表现出凸形,与文献中报道的光学验证测量值对齐。基于实验室的XRDI有可能在较短的时间内和原位绘制晶圆的翘曲,这可以在同步加速器辐射源中完美地执行。关键字:计量学,硅,扭曲,X射线衍射,晶圆。I.简介
* 通讯作者:nima.gorji@tudublin.ie 摘要 — X 射线衍射 (XRD) 映射是一种非破坏性计量技术,可以重建通过热机械应力在硅晶片上引起的翘曲。在这里,我们使用一种基于在 x 和 y 方向以及对同一样品进行不同 90 度旋转的一系列线扫描的方法来映射晶片的翘曲。这些线扫描从晶片表面收集摇摆曲线,记录由于表面取向错误而偏离布拉格角的衍射角 (ω)。表面翘曲通过引起测量的衍射角和参考布拉格角 (ω − ω0) 之间的差异和摇摆曲线增宽 (FWHM) 反映在 XRD 测量中。通过收集和整合整个表面和晶圆多次旋转的摇摆曲线 (RC) 和 FWHM 加宽,我们可以生成表面函数 f(x) 和角度错位 (翘曲) 的 3D 图。翘曲呈现凸形,与文献中报道的光学轮廓测量一致。基于实验室的 XRDI 有可能在更短的时间内原位绘制晶圆的翘曲图,就像在同步辐射源中完美执行一样。关键词:计量学、硅、翘曲、X 射线衍射、晶圆。I.介绍
输出功率@3.3VDC (mW, CW) >1, 10, 20, …,200 >200, 300, …,500 功率可通过软件调整 功率稳定性 (rms, 4 小时以上) <3%, <2%, <1% 脉冲宽度 (FWHM) >10ns, 20ns, …,10ms >12ns, 13ns, …,10ms 横模 近 TEM 00 幅度噪声 (rms, CW) <1% M 2 因子 <1.2 光圈处光束直径 (1/e 2 ,mm) ~1.2 光束发散度, 全角度 (mrad) <1.0
• 一般而言,对于谐振电路, =(LC) -1/2,因此需要非常小的 L 和 C 来获得高频:使用腔体作为谐振电路的一种形式,因为它们具有低 L 和 C • 只有电场在电子加速中发挥作用(沿圆柱形腔体的轴线) • 在圆柱形微波腔中,轴上有孔供电子通过,其电场配置仅略有改变 • 有效地将能量传输到电子束,即能量损失低,因为对于谐振电路 Q ~ 10 2(其中 Q=f 0 /2 f 和 2 f 为 FWHM),而对于腔体,Q ~ 10 4 最低谐振模式的电场、磁场配置
在本文中,我们量化了SGR a *的地平尺度发射的时间变异性和图像形态,如EHT在2017年4月的波长1.3 mm所示。我们发现,SGR A *数据表现出可变性,超过了数据中的不确定性或星际散射的影响所能解释的。这种变异性的大小可能是相关孔密度的很大一部分,在某些基准线上达到约100%。通过对简单几何源模型的探索,我们证明了与其他具有可比复杂性的形态相比,环类形态为SGR A *数据提供了更好的拟合。我们开发了两种策略,以将静态几何环模型拟合到Time-sgr a * data;一种策略将模型拟合到源是静态并平均这些独立拟合的数据的简短段,而其他拟合模型则使用参数模型与平均源结构围绕结构可变性功率谱的参数模型进行完整数据集。几何建模和图像域特征提取技术都确定环直径为51.8±2.3μ,为(68%可靠的间隔),环形厚度约束,其FWHM的FWHM约为30%和50%。要将直径测量值提高到共同的物理尺度,我们使用GRMHD模拟产生的合成数据对其进行了校准。该校准将重力半径的角度大小限制为 - + 4.8 0.7 1.4μAS,我们将其与Maser视差的独立距离测量结合在一起,以确定SGR A *的质量为´ - + 4.0 10 10 0.6 1.1 6 1.1 6 M e。统一的天文学词库概念:黑洞(162)
图 1. 钙钛矿 CsPbBr 3 QDs 的形态和光学特性:TEM 图像、UV-vis 吸收光谱和 PL 光谱,以及 (a)、(e)、(i) Cs 2 CO 3 - 40 ℃ 、(b)、(f)、(j) Cs 2 CO 3 -100 ℃ 、(c)、(g)、(k) CsOAc-40 ℃ 和 (d)、(h)、(l) CsOAc-100 ℃ QDs 的 TA 伪彩色图像。插图显示相应的尺寸分布直方图、FFT 和 IFFT 图像。 (m) Cs 2 CO 3 -40 ℃ 、Cs 2 CO 3 -100 ℃ 、CsOAc-40 ℃ 和 CsOAc-100 ℃ QDs 的 TA 漂白动力学曲线和 (n) 时间分辨 PL 衰减光谱。基于 50 多个批次的不同 QDs 的 (o) FWHM 和 (p) 峰值波长的误差线图。
目标。我们使用光学选择的无线电(RL)和射电Quiet Quasars样本(在Redshift范围0.15≤z≤1。9)我们已经与VLA-First Survey目录进一步交叉匹配。我们样品中的来源具有宽Hβ和Mg II发射线(1000 km / s 15 000 km / s)。,我们使用多波长档案数据和Astrosat望远镜的靶向观测来构建了我们宽线类星体的宽波光谱分布(SED)。方法。我们使用最先进的SED建模代码CIGALE V2022.0来对SED进行建模,并确定类星体宿主星系的最佳物理参数;也就是说,他们的恒星形成率(SFR),主要序列恒星质量,散发性,灰尘,电子折叠时间和恒星人口年龄所吸收的光度。结果。我们发现,我们来源的宿主星系的发射在总亮度的20%至35%之间,因为它们主要由中央类星体主导。使用最佳拟合估计值,我们重建了我们的类星体的光谱,这在复制相同来源的观察到的SDSS光谱方面表现出了显着的一致性。我们绘制了我们的类星体的主要序列关系,并注意它们与星形星系的主要顺序显着远离。此外,主要序列关系显示了我们的RL类星体的双峰性,表明Eddington比率隔离的种群。结论。我们得出的结论是,对于类似的恒星质量,Eddington比率较低的样本中的RL类星体往往降低了SFR。我们的分析为研究类星体的宿主星系并从宿主星系角度解决无线电二分法问题提供了完全独立的途径。
图2。微观和光谱表征方法的概述,以评估2D材料的转移前/转移质量。a)光学显微镜用于快速简便地评估薄膜清洁度和结构完整性。转移产生的裂纹可以在顶部图像中看到。b)扫描电子显微镜(SEM)和C)隧道电子显微镜(TEM)用于观察µM/nm尺度疾病,指示损伤/污染。d)原子力显微镜(AFM)用于评估步骤高度的变化,指示裂纹/皱纹和/或污染。顶部图像中看到的白线表明转移膜中的皱纹。e)拉曼,f)光致发光(PL)和G)X射线光电子光谱(XPS)用于评估2D膜中污染,掺杂和应变的层数,污染的存在,掺杂和应变。陡峭的高幅度峰表示高质量和无损害的2D材料的光谱峰的全宽度最大(FWHM)直接对应于晶体质量。在转移前后的FWHM发生巨大变化,如顶部的拉曼和PL图像所示,表明由于转移而降级。XPS光谱中显示的峰表示胶片中不同元素的存在;因此,转移后的其他峰表明,由于污染而导致化学成分的变化。(a)改编自参考。82经许可。©2009美国化学学会。(b)改编自参考。60经许可。©2014 Elsevier Ltd.(c)改编自参考。59经许可。©2015日本化学学会。(d)改编自参考。61经许可。©2019美国化学学会。(E-G)改编自参考。67经许可。©2017 Elsevier B.V.
● 当前 GC ○ 已发布 7 个,2 个正在开发中 ○ 美国人员/运营 ■ “运营”、“人员”、“美国人员” ○ 关联公司/子公司 ■ “子公司”和“关联公司”的定义 ○ RGIQE ■ 用于比较 SAR 系统的方程式定义 ○ 任务保证 ■ “任务保证”的定义和确定豁免的方法 ○ 数据提交(第 3 层评估) ■ 概述与 TLC 时钟启动相关的第 3 层数据的评估流程 ○ 网络安全 ■ 概述 CRSRA 对必需和推荐的网络安全实践的看法 ○ 地面站分类(正在开发中) ■ 地面站类型、用途和许可要求的定义 ○ 仪器分类和分层(正在开发中) ■ 使用 FWHM 定义仪器类型、用途和许可要求 ● ACCRES 工作讨论的方向 ○ CRSRA 还应为新的/额外的 GC 考虑哪些其他主题?○ 对现有 GC 的变更有何建议?