量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
RKP 以其可靠性、特殊流体适用性和低噪音排放在工业市场上广为人知,多年来一直是塑料和压铸机械等高要求应用的理想解决方案。RKP-II 泵的新设计尺寸为每转 63、80 和 100 cc,可提供更高的耐用性和更安静的性能。凭借电液数字 p/Q 控制系统,该泵非常适合各种压力和体积流量控制应用。因此,它很早就被用作注塑机等顺序运动应用中的灵活解决方案。它可以实现更动态、更精确的控制以及更高的机器操作重复性。能够“即时”更改参数集,从而可以在使用不同执行器进行顺序机器处理期间优化性能。RKP-II 与电液数字 p/Q 控制相结合,通过更长的使用寿命、更低的噪音排放、改进的控制选项、扩展的功能和轻松的调试,为注塑机制造商带来了竞争优势。
众所周知,抽象的癌症治疗会引入心脏毒性,对结局产生负面影响和生存。识别患有心力衰竭风险(HF)的癌症患者对于改善癌症治疗结果和安全性至关重要。这项研究检查了机器学习(ML)模型,以使用电子健康记录(EHR)(包括传统的ML,时间感知的长期短期记忆(T-LSTM)(T-LSTM)和大型语言模型(LLMS),使用从结构性医疗代码中得出的新型叙事特征。我们确定了来自佛罗里达大学健康的12,806名患者,被诊断出患有肺部,乳腺癌和结直肠癌,其中1,602名患者在癌症后患有HF。LLM,GatorTron-3.9b,达到了最佳的F1分数,表现优于传统的支持向量机39%,T-LSTM深度学习模型乘以7%,并且广泛使用的变压器模型BERT,5.6%。分析表明,所提出的叙事特征显着提高了特征密度和提高的性能。引言癌症和心血管疾病是美国(美国)的前2个死亡原因,它们通常在多个层次上共存并相交。1-3癌症是全球重要的公共卫生问题,也是美国第二常见的死亡原因。在2023年,美国有1,958,310例新的癌症病例,导致609,820例死亡。4肺癌和支气管癌是最致命的癌症形式,估计导致127,070例死亡,其次是结直肠癌,估计有52,550例死亡。Yang等。 angraal等。 Yu等。Yang等。angraal等。Yu等。Yu等。乳腺癌是最常见的癌症诊断,估计有30万人。已知许多癌症治疗方式,例如化学疗法和放射疗法,都引入心脏毒性并可能导致心脏故障,这是癌症患者疾病和死亡的重要原因。5例癌症患者经常面临双重挑战,即不仅要管理其原发性癌症,而且还涉及癌症治疗的潜在心脏毒性作用。6即使不是直接心脏毒性,癌症治疗也会导致代谢,能量平衡,贫血和其他生理压力源的变化,这些胁迫可能会加速或发现先前存在的患者心脏病的倾向。为了解决这个问题,心脏肿瘤学是结合心脏病学和肿瘤学知识以识别,观察和治疗癌症患者心血管疾病的越来越感兴趣的领域。HF的发生率显着有限,对癌症的治疗方案显着影响,并对生活质量产生负面影响。使用电子健康记录(EHR)来识别有HF风险的癌症患者,以帮助决策并提高癌症治疗的安全性。通常将HF的预测作为二进制分类任务进行处理,该任务是使用机器学习模型来对其进行访问的,以将给定的个体分类为正(以HF风险)或负面(无HF风险)类别。先前的研究探索了使用EHR来使用传统的机器学习模型和基于神经网络的深度学习模型来预测HF的风险。混合神经网络11-13,包括混合动力7系统地探索了传统的机器学习模型,包括逻辑回归(LR),随机森林(RF),支持向量机(SVMS)和梯度增强(GB),具有单速和术语频率内文档频率(TF-IDF)特征编码策略。8开发了使用LR,RF,GB和SVM的HF患有HF的门诊病人的死亡率和住院模型。9探索了英国生物库的基因组学数据以进行心力衰竭预测。在这些先前的研究中,来自EHR的结构化医疗法规通常表示为具有零值和零值的向量,其中零表示患者没有相应的特征,而患者表示患者具有相应的特征,称为单次编码。然而,在单次编码期间,EHR的事实结构被简化为向量表示,而无需考虑时间关系。为了捕获事件时间结构,研究人员探索了深度学习方法,例如使用长期短期记忆(LSTM)10实施的复发性神经网络。
摘要 — 特征选择在机器学习中非常重要,它可用于降低分类、排名和预测问题的维数。删除冗余和噪声特征可以提高训练模型的准确性和可扩展性。但是,特征选择是一项计算量大的任务,其解决方案空间会以组合方式增长。在这项工作中,我们特别考虑了二次特征选择问题,该问题可以用量子近似优化算法 (QAOA) 来解决,该算法已用于组合优化。首先,我们用 QUBO 公式表示特征选择问题,然后将其映射到 Ising 自旋哈密顿量。然后我们应用 QAOA 来找到该哈密顿量的基态,这对应于特征的最佳选择。在我们的实验中,我们考虑了七个不同的真实世界数据集,维数高达 21,并在量子模拟器和 7 量子比特 IBM (ibm–perth) 量子计算机上(对于小型数据集)运行 QAOA。我们使用选定的特征集来训练分类模型并评估其准确性。我们的分析表明,使用 QAOA 解决特征选择问题是可能的,并且目前可用的量子设备可以得到有效利用。未来的研究可以测试更广泛的分类模型,并通过探索性能更好的优化器来提高 QAOA 的有效性。索引术语 —QAOA、特征选择、QUBO、分类
人类表现出非常出色的技能,可以在不同形状,姿势和外观的对象中传递操纵能力,这是一种植根于他们对不同实例之间语义对应关系的理解的能力。为了为机器人提供类似的高级理解,我们提出了Sparsedff,这是一种新颖的DFF,用于3D场景,利用大型2D视觉模型从稀疏的RGBD图像中提取语义特征,该域与固定设置的许多任务相关,尽管它与许多任务相关。sparsedff生成视图一致的3D DFF s,通过将图像特征映射到3D点云,从而有效地对灵活性操作进行了有效的灵感操作学习。Sparsedff的中心是一个特征改进网络,通过视图和特征连续性的点式缩写机制之间的对比损失进行了优化。这有助于最小化特征差异W.R.T.最终效应参数,桥接演示和目标操作。在现实世界中用灵巧的手验证,Sparsedff证明有效地有效地操纵刚性和可变形的对象,表明对象和场景变化之间具有显着的概括能力。
今年 12 月,《航空制造》将出版一本名为《国际创新评论》的特别数字版,该版将介绍我们在过去 12 个月中发表的最有趣的故事,重点介绍全球航空航天行业的尖端技术创新。该评论将通过我们 17,000 多名数字版读者群进行广泛传播,并通过我们的网站和 LinkedIn 频道进行推广。广告文案截止日期:11 月 20 日