General Zenodo Zenodo Zenoda Cern https://zenodo.org/ ZA General Figshare Figshare Digital Science https://figshare.com/ RU Generally all Harvard Datavers' repository datavard datavers Harvard Harvard University https://datavse.harvard.harvard.evd. Elsevier https://data.mendeley.com/已经开放科学框架OSF开放科学中心(美国)
脑肿瘤分割对于准确的诊断,手术计划和治疗监测至关重要。大脑中的异常细胞生长需要精确的定位才能有效管理。 本研究比较了MRI脑肿瘤图像的两种高级分割技术。 第一个使用三个数据集(Figshare,Sartaj,BRT35H)将有效的网络B0与Grad-CAM相结合,以实现视觉解释性,以达到96.87%的分割精度。 第二个在Figshare数据集上采用了修改后的U-NET体系结构,达到了99.84%的精度。 全面的评估探讨了数据集选择,模型体系结构以及诸如Grad-CAM对性能的影响。 通过识别这些方法的优势和劣势,该研究为选择精确的脑肿瘤分割算法提供了见解。 这项工作突出了自动分割在改善诊断精度,减少临床工作量以及使早期干预以获得更好的患者预后的重要性。大脑中的异常细胞生长需要精确的定位才能有效管理。本研究比较了MRI脑肿瘤图像的两种高级分割技术。第一个使用三个数据集(Figshare,Sartaj,BRT35H)将有效的网络B0与Grad-CAM相结合,以实现视觉解释性,以达到96.87%的分割精度。第二个在Figshare数据集上采用了修改后的U-NET体系结构,达到了99.84%的精度。全面的评估探讨了数据集选择,模型体系结构以及诸如Grad-CAM对性能的影响。通过识别这些方法的优势和劣势,该研究为选择精确的脑肿瘤分割算法提供了见解。这项工作突出了自动分割在改善诊断精度,减少临床工作量以及使早期干预以获得更好的患者预后的重要性。
摘要:脑肿瘤是细胞发育不正常的结果。它是全球成年人死亡的主要原因。早期发现脑肿瘤可以避免许多死亡。用于早期脑肿瘤诊断的磁共振成像(MRI)可以提高患者的生存机会。诊断脑肿瘤的最常用方法是 MRI。MRI 中恶性肿瘤的可见性提高使治疗更容易。脑癌的诊断和治疗取决于其识别和治疗。过去十年中提出了许多深度学习模型,包括 Alexnet、VGG、Inception、ResNet、DenseNet 等。所有这些模型都是在庞大的数据集 ImageNet 上训练的。这些通用模型具有许多参数,在针对特定问题实施这些模型时,这些参数变得无关紧要。本研究使用自定义深度学习模型对脑部 MRI 进行分类。提出的疾病和空间注意力模型(DaSAM)有两个模块; (a) 疾病注意模块 (DAM),用于区分图像的疾病区域和非疾病区域;(b) 空间注意模块 (SAM),用于提取重要特征。所提出的模型的实验在两个公开的多类数据集 Figshare 和 Kaggle 数据集上进行,分别达到了 99% 和 96% 的准确率。所提出的模型还使用跨数据集验证进行了测试,在 Figshare 数据集上训练并在 Kaggle 数据集上验证时达到了 85% 的准确率。DAM 和 SAM 模块的结合实现了特征映射功能,这对于在模型的决策过程中突出显示重要特征非常有用。
摘要 - 本研究提出了一种使用所提出的优化阈值差异 (OTD) 和粗糙集理论 (RST) 自动分割脑肿瘤的有效方法。使用所提出的两级分割算法确定肿瘤区域。第一级,即创建叠加图像,它是初始阶段分割的脑区所有像素的强度平均值。然后是第二级,其中根据指定的阈值在脑区和叠加图像之间应用阈值差异处理。使用灰度共生矩阵 (GLCM) 从分割图像中提取特征。为了提高性能,对提取的特征采用了 RST。使用 Figshare 开放数据集验证了完全自动化的方法。
摘要:在医学领域,图像分割是一项至关重要且困难的任务。识别异常脑组织的一种有用技术是磁共振成像 (MRI) 扫描。对于放射科医生来说,从 MRI 扫描中正确识别和分类脑肿瘤仍然是一项困难且耗时的任务。这项研究提供了一种准确识别脑肿瘤的巧妙技术。该研究调查了卷积神经网络 (CNN) 与优化技术的结合使用,以从 MRI 数据中对不同类型的脑肿瘤进行分类。具体而言,使用 VGG16 模型上的迁移学习对肿瘤特征进行分类并识别肿瘤种类。该方法旨在提高 MRI 扫描效率并提高识别精度。当使用来自 Figshare、SARTAJ 和 Br35H 数据集 [31] 的 MRI 扫描进行评估时,利用迁移学习的所提出方法增强了原始 VGG16 模型的性能,允许比其基线功能更准确、更稳健的分类,从 91.38% [1] 提高到 95% 以上。关键词:MRI 预处理、分类、脑肿瘤、卷积神经网络、迁移学习
人工智能(AI)是自动脑肿瘤MRI图像识别的有效技术。AI模型的培训需要大量标记的数据,但是医疗数据需要由专业临床医生标记,这使数据收集变得复杂且昂贵。传统的AI模型要求训练数据和测试数据必须遵循独立且分布相同的分布。为了解决这个问题,我们在本文中提出了一个基于监督多层词典学习(TSMDL)的转移模型。借助从相关领域学到的知识,该模型的目标是解决转移学习的任务,而目标域只有少数标记的样本。基于多层词典学习的框架,所提出的模型了解了每一层中的源和目标域的共享词典,以探索不同域之间的内在连接和共享信息。同时,通过充分利用样品的标签信息,引入了Laplacian正则化项,以使类似样本的字典编码尽可能接近,并尽可能地对不同类样本的字典编码进行编码。大脑MRI图像数据集Rembrandt和Figshare上的识别实验表明,该模型的性能优于竞争状态。
摘要:如果检测不准确,脑肿瘤会引起严重的健康并发症并导致死亡。因此,早期检测脑肿瘤并准确分类脑肿瘤类型在诊断中起着重要作用。最近,基于深度卷积神经网络 (DCNN) 的方法使用脑磁共振成像 (MRI) 图像在检测和分类任务中表现出色。然而,DCNN 架构的准确性取决于数据样本的训练,因为它需要更精确的数据才能获得更好的输出。因此,我们提出了一种基于迁移学习的 DCNN 框架来对脑肿瘤进行分类,例如脑膜瘤、神经胶质瘤和垂体瘤。我们使用预先训练的 DCNN 架构 VGGNet,该架构之前已在大型数据集上进行训练,并用于将其学习参数迁移到目标数据集。此外,我们还采用了迁移学习方面,例如微调卷积网络并冻结卷积网络的各层以获得更好的性能。此外,此方法在输出端使用全局平均池化 (GAP) 层来避免过度拟合问题和梯度消失问题。在 Figshare 数据集上对所提出的架构进行了评估,并与基于深度学习的竞争性脑肿瘤分类方法进行了比较。我们提出的方法产生了 98.93% 的测试准确率,并且优于当代基于学习的方法。
摘要:如果未准确检测到,脑肿瘤会导致严重的健康并发症,并导致死亡。因此,对脑肿瘤的早期检测和脑肿瘤类型的准确分类在诊断中起主要作用。最近,使用大脑磁共振成像(MRI)图像的基于深度卷积神经网络(DCNN)方法在检测和分类任务方面表现出色。但是,DCNN体系结构的准确性取决于数据样本的培训,因为它需要更精确的数据才能获得更好的输出。因此,我们提出了一个基于转移学习的DCNN框架,以对脑膜瘤肿瘤,神经胶质瘤肿瘤和垂体肿瘤进行分类。我们使用预先训练的DCNN体系结构VGGNET,该体系结构先前在巨大的数据集上进行了训练,并用于将其学习参数传输到目标数据集。此外,我们采用了转移学习方面,例如卷积网络,并冻结卷积网络的层,以提高性能。此外,这种提出的方法在输出处使用全球平均池(GAP)层,以避免过度解决问题和消失的梯度问题。评估了所提出的体系结构并将其与基于深度学习的脑肿瘤分类方法进行比较。我们提出的方法可产生98.93%的测试准确性,并优于当代学习方法。
脑肿瘤死亡率高,治疗选择有限,是全球重大健康问题。这些肿瘤是由脑内细胞异常生长引起的,大小和形状各异,因此,对于医疗专业人员来说,通过磁共振成像 (MRI) 扫描手动检测它们是一项主观且具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习(特别是 DenseNet 架构)自动化脑肿瘤分类的潜力,旨在提高临床应用的准确性和通用性。我们利用了 Figshare 脑肿瘤数据集,该数据集包含 233 名患者的 3,064 张 T1 加权增强 MRI 图像,这些患者患有三种常见肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。使用来自 ImageNet 的迁移学习评估了四种预训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 实现了最高的测试集准确率 96%,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于提高 DenseNet 的性能,同时将其视为基础模型。为了增强基础 DenseNet 模型的通用性,我们实施了一种微调方法,该方法采用了正则化技术,包括数据增强、dropout、批量归一化和全局平均池化,并结合了超参数优化。这种增强的 DenseNet 模型实现了 97.1% 的准确率。我们的研究结果证明了 DenseNet 结合迁移学习和微调对脑肿瘤分类的有效性,凸显了其在临床环境中提高诊断准确性和可靠性的潜力。
摘要 脑肿瘤是全球第十大常见死亡疾病之一,占中枢神经系统所有原发性癌症的 80% 至 90%。由于全球肿瘤疾病的增加,仅在早期阶段就预测脑肿瘤就变得非常必要。生存率取决于早期诊断和有效治疗。如果不能及时发现脑肿瘤,死亡风险会显著增加。然而,由于肿瘤细胞的复杂性和多样性,放射科医生面临许多困难,这使得手动处理磁共振成像 (MRI) 扫描变得困难且耗时。深度神经网络学习 (DL) 和智能机器学习 (ML) 算法已成为诊断医学图像的有前途的技术,允许从 MRI 数据报告自动提取相关模式和特征,从而快速准确地改善肿瘤诊断。这些技术可以解决脑肿瘤特征的复杂性和不可预测性,从而可以增强诊断过程。各种深度神经网络和智能机器学习网络,如 VGG19 网络、Inception、U-net、RNN、Bi-LSTM、混合模型、CNN、逻辑回归、RF、决策树、混合模型,已被用于从 MRI 中提取预期特征,以便对脑肿瘤进行早期预测。本文使用从 FigShare 数据集和 BRATs 数据集中获取的 MRI 图像对脑肿瘤的严重程度进行分析。与 SVM 模型相比,CNN 模型的准确率更高,分别为 93% 和 86%。 关键词:深度学习、机器学习、SVM、CNN、混合模型 1. 简介 人工智能 (AI) 已经改变了医疗保健中的诊断成像,它结合机器学习、深度学习高级算法来改进对医学图像(例如 CT、MRI 和 X 射线扫描)的分析。人工智能改变了诊断过程,允许更精确、更有效的疾病识别方法,而不仅仅是自动化工作。这项技术代表了诊断成像分析和应用的重大进步 [1]。脑肿瘤是全球主要的健康问题,死亡率急剧上升。这些恶性肿瘤主要分为原发性和继发性两大类。从肾脏、乳房、皮肤、肺或甲状腺等其他器官转移到大脑的癌细胞是继发性脑肿瘤的来源,而原发性脑肿瘤则在大脑内部开始和生长。患有恶性继发性肿瘤的患者存活机会较小 [2,3]。另一方面,