《Fimbria》第 20 卷聚焦于杰出的医师科学家 Louise Laurent 博士的实验室,他是母胎医学部的教授。本期的临床焦点是我们的基础重症监护支持:产科计划,由医学博士 Scott Harvey 领导,提供实践技能培训方法来护理重症产科患者。我们最新的项目,妇产科研究创新中心 (CORI),已经开始了团队科学的新颖和创新研究努力,以改善我们社区和全世界的健康状况。文化与正义法定人数主办了加州大学圣地亚哥分校健康分娩社区参与和研讨会及招待会,庆祝助产周和助产士融入医院分娩环境的大巡查。最后,在本期中,我们宣布新匹配的研究员将在 2025 学年加入 UCSD 大家庭,并进一步了解我们目前的一年级研究员。
神经工程领域的最新进展使得神经假体得以开发,这有助于神经系统疾病患者的功能恢复。在这项研究中,我们提出了一个实时神经形态系统来人工重现海马体 CA1 区域不同神经元群的 θ 波和放电模式。海马 θ 振荡(4-12 Hz)是一种重要的电生理节律,有助于导航、记忆和新颖性检测等各种认知功能。提出的 CA1 神经模拟电路包括现场可编程门阵列 (FPGA) 上的 100 个线性化的 Pinsky-Rinzel 神经元和 668 个兴奋性和抑制性突触。实施的 CA1 脉冲神经网络包括产生 θ 节律的主要神经元群:兴奋性锥体细胞、PV+ 篮状细胞和抑制性中间神经元 Oriens Lacunosum-Moleculare (OLM) 细胞。此外,还使用突发漏积分和放电 (LIF) 神经元模型在 FPGA 上实现了通过穿通通路从内嗅皮层到 CA1 区域、通过 Schaffer 侧支到 CA3 区域以及通过穹窿海马伞到内侧隔膜到 CA1 区域的主要输入。硬件实现的结果表明,所提出的 CA1 神经模拟电路成功重建了 theta 振荡,并在功能上说明了不同神经元群体放电反应之间的相位关系。还评估了内侧隔膜消除对 CA1 神经元群体放电模式和 theta 波特征的影响。该神经形态系统可被视为一个潜在平台,为未来神经假体应用开辟了机会。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要输卵管上皮细胞 (FTEC) 被认为是高级别浆液性卵巢癌的起源细胞。FTEC 类器官可用作该疾病的研究模型。然而,培养类器官需要补充多种昂贵生长因子的培养基。我们提出,基于输卵管成分的组合条件培养基,包括上皮细胞、基质细胞和内皮细胞,可以增强 FTEC 类器官的形成。我们从输卵管的伞部获得了两种原代培养细胞系。根据类器官生长的培养基,将它们分成常规或组合培养基组并进行比较。评估了类器官的数量和大小。定量聚合酶链反应 (qPCR) 和免疫组织化学 (IHC) 用于评估基因和蛋白质表达 (PAX8、FOXJ1、β-catenin 和干性基因)。酶联免疫吸附测定用于测量两种培养基中的 Wnt3a 和 RSPO1。将 DKK1 和 LiCl 添加到培养基中以评估它们对 beta-catenin 信号传导的影响。通过生长因子阵列评估组合培养基中的生长因子。我们发现常规培养基更有利于类器官的增殖(数量和大小)。此外,组合培养基中的 WNT3A 和 RSPO1 浓度太低,需要添加,使得成本与常规培养基相当。然而,两组的类器官形成率均为 100%。此外,与常规培养基组相比,组合培养基组的 PAX8 和干性基因表达(OLFM4、SSEA4、LGR5、B3GALT5)更高。在常规培养基中生长的类器官中 Wnt 信号明显,但在组合培养基中则不明显。发现 PLGF、IGFBP6、VEGF、bFGF 和 SCFR 在组合培养基中富集。总之,组合培养基可以成功培养类器官并增强 PAX8 和干性基因表达。然而,传统培养基对于类器官增殖而言是更好的培养基。两种培养基的费用相当。使用组合培养基的好处需要进一步探索。