摘要Al 2 O 3 /Al 6 Ti 2 O 13具有低热膨胀性能的复合陶瓷有望通过定向能量沉积物激光器(DED-LB)技术快速制备大规模和复杂组件。但是,由于对过程条件的理解不足,DED-LB技术的更广泛应用受到限制。Al 2 O 3 /Al 6 Ti 2 O 13(6 mol%TIO 2)复合陶瓷的质量,微观结构和机械性能作为能量输入的函数在广泛的过程窗口中被系统地研究。在此基础上,揭示了固化缺陷和微观结构的演化过程的形成机理,并确定了优化的过程参数。结果表明,高能量输入提高了熔融池的流动性,并促进了组成相的均匀分布和完整的生长,从而促进消除凝固缺陷,例如孔隙和条间隙。此外,微结构的大小在很大程度上取决于能量输入,当能量输入增加时增加。此外,由于固化条件的变化,α -AL 2 O 3相的形态随着能量输入的增加而逐渐从细胞转变为细胞树突。在凝固缺陷和微观结构大小的全面影响下,Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的裂缝韧性和弯曲强度随着能量输入的增加而呈现抛物线法行为。在0.36 - 0.54 W ∗ min 2 g - 1 mm -1的能量输入范围内实现最佳的形状质量和出色的机械性能。在此过程窗口中,Al 2 O 3 /Al 6 Ti 2 O的平均微度,断裂韧性和弯曲强度分别高达1640 HV,3.87 MPa M 1/2和227 MPa。这项研究提供了确定熔体生长Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的DED-LB的过程参数的实用指导。
在潜在塑性铰区域内,钢筋必须屈服(压缩和拉伸)(可能出现应变硬化),这一事实使标准连接无效,在标准连接中,钢筋接头位于梁柱接头处。当地和国际结构规范都禁止在距离梁一个有效深度以内的距离内进行钢筋接头。考虑到这一点,接头位于梁的跨中,远离塑性铰区域,此处由横向力引起的弯矩较小。这种连接广泛应用于几个对地震要求较高的地区,如夏威夷和新西兰。9,10 Park、Restrepo 和 Buchanan 进行的测试充分证明了其抗震性能。11 他们发现了以下内容:
Dentsply Sirona推出了一种新的高强度玻璃陶瓷材料Cerec Tessera™。它的特征是晚期锂陶瓷材料。它具有40-45%的玻璃含量,亚微米粒径约为0.5 µm。它由约90%二硅酸盐晶体(5%磷酸锂)组成,其余的5%Virgilite晶体为小(<100纳米)硅酸盐硅酸盐硅酸盐骨骼状晶体。材料的高强度是通过涂抹表面釉料并将铣削的恢复在Speedfire烤箱(Dentsply Sirona)中的4½分钟矩阵发射周期中产生的。矩阵启动通过形成新的virgilite晶体,表面愈合玻璃含量,并增加密度以达到大于700 MPa的弯曲强度,从而优化了晶体结构。
• 抗压强度:EN 14617 256 MPa • 密度:ASTM C97 2463 kg/m3 • 吸水率:ASTM C97 0.03% • 厚度:标准 2cm 或 3cm。可定制 • 耐磨性:ASTM C241 48 • 莫氏硬度:EN 15771 平均值 6 • 抗污性:ANSI Z124.6 通过 • 耐化学性:ASTM C650 不受影响 • 抗弯强度:ASTM C880(干燥:48.5 MPa)(湿润:52.6 MPa) • 抗热震性:ASTM-C484 无缺陷 • 断裂模量:ASTM C99(干燥:50.2 MPa)(湿润:53.0 MPa) • 粘结强度:ASTM C482 3.46 MPa • 表面处理:抛光(6000 级可用) • 边缘:按规定 • 抗菌处理:是
摘要 — 使用植物纤维替代碳纤维或玻璃纤维等人造纤维是当今许多研究人员的研究课题。植物纤维具有可再生、可降解、低毒性和低成本等特点。本文评估了环氧聚合物基质中的剑麻纤维与玻璃纤维混合复合材料的拉伸强度、弯曲强度和弹性模量的力学性能。将纤维在 10% 重量的氢氧化钠溶液中处理,然后根据 ASTM D3039 和 D790 标准在万能试验机上进行拉伸试验。性能最好的复合材料是剑麻 + 玻璃纤维混合物,拉伸强度为 86%,弹性模量为 64%。在弯曲试验中,结果显示混合复合材料的最大应力为 119%,较大断裂应力为 138%。
1在软培养基中引导弹性波的基本面6 1理论方面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.1线性弹性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2散装波。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.3羔羊波。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 2实验方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.1样品制备。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.2设置。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。16 2.3单色激发和频镜检查。。。。。。。。。。。。。。。。。。。17 2.4提取复杂位移图。。。。。。。。。。。。。。。。。。18 2.5首先观察。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 3从盘子到条带。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.1自由接口处的反射。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.2条带中的挠性模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.3面内引导波:与羔羊波的类比。。。。。。。。。。。。。。。。23 3.4分散关系:关键物理特征。。。。。。。。。。。。。。。。。。。。25 3.5软带中的实验测量。。。。。。。。。。。。。。。。。。。。26 3.6流变学的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.7调查Dirichlet边界条件。。。。。。。。。。。。。。。。。。。30 4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>33 div>
性能特性. . . . . . . . . . . . . . . . . . . . . . . . . . 6 机械特性. . . . . . . . . . . . . . . . . . . . . . . . . 6 极端温度下的拉伸强度和弯曲强度. . . . . . . . . . . . . 6 超高温度. . . . . . . . . . . . . . . . . . . . . . . 6 根据 ASTM 测试方法 D 638 的拉伸特性. . . . . . . . . 7 超低温. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 抗冲击性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 热重分析. . . . . . . . . . . . . . . . . . . . . . . . 12 长时间热暴露的影响. . . . . . . . . . . . . . . . . . . 12 UL 相对热指数. . . . . . . . . . . . . . . . . . . . . . 12 热老化后性能的保持. . . . . . . . . . . . . . . . . 12 比热. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 热导率. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 线性热膨胀系数 (CLTE) . . . . . . . . . . . . . . 13 抗蠕变性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 可燃性. . . . . . . ................. ... . . . . . . . . . . 16 点火特性 . . . . . . . . . . . . . . 16 UL 94 可燃性标准 . . . . . . . . . . . . . 17 水平燃烧测试 . . . . . . . . . . . . . 17 20 MM 垂直燃烧测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 对汽车和航空液体的抵抗力. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................... . . 21 恒定湿度下的平衡吸收 . . . . . 21 尺寸变化 . . . . . . . . . . . . 22 尺寸和属性的恢复 . . . . . . . . 22 机械和电气属性的变化 . . . . . 22 突然高温暴露的限制 . . . . 23 Weather-Ometer® 测试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 耐伽马辐射性 . . . . . . . . . . . . . . . . . . . . . . . . 24 电气性能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TORLON 绝缘聚合物 . . . . . . . . . . . . . . . . . . . . . . . . 25 耐磨应用服务 . . . . . . . . . . . . . . . . . . . 26 TORLON PAI 耐磨等级介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
在极高的温度下,陶瓷的关键参数之一是其抗蠕变性。蠕变行为的表征通常通过弯曲试验进行评估,当拉伸和压缩之间出现不对称时,蠕变行为的表征会变得复杂。为了检测和量化这种不对称行为,建议使用数字图像相关 (DIC)。首先,高温下 DIC 需要解决几个挑战,即随机图案稳定性、辐射过滤和热雾。由于加热陶瓷的可能性有限、应变场不均匀及其水平低,这些挑战更加严重。除了几项实验发展之外,由于使用了基于临时有限元运动学的两种 DIC 全局方法,应变不确定性得到了降低。最后,将所提出的方法应用于高抗蠕变性能设计的工业锆石陶瓷在 1350°C 下的不对称蠕变分析。
汞合金的优点 ................................................................................................ 6 汞合金的缺点 ................................................................................................ 7 汞合金断裂的发生率 .............................................................................................. 7 当前关于汞合金修复体的文献 ...................................................................... 9 I.体外修复的汞合金结果 ............................................................................. 9 A. 剪切粘结强度评估 ............................................................................. 9 B. 修复体的微渗漏评估 ............................................................................. 16 C. 修复体的抗弯强度评估 ............................................................................. 19 D. 修复体的断裂强度评估 ............................................................................. 20 II.修复与更换修复体的临床寿命 ............................................................. 22 A. 回顾性研究 ............................................................................................. 23 B.临床研究 ............................................................................................. 24 III.表面处理方案和修复材料 ................................................................................31 A. 方案 ....................................................................................................31 B.系统评价 ................................................................................................36 C. 体外研究 ............................................................................................................37 D. 大体积填充树脂复合材料 ......................................................................................39 总结 .............................................................................................................................41 文献中的空白和未来需要的方向 .............................................................................41 3.材料和方法 .............................................................................................43
物理特性 公制 英制 注释 比重 1.16 g/cc 1.16 g/cc ASTM D792 吸水率 0.30 % 0.30 % 浸泡,24 小时;ASTM D570(2) 饱和吸水率 7.0 % 7.0 % 浸泡; ASTM D570(2) 机械性能 公制 英制 注释 硬度,洛氏 M 85 85 ASTM D785 硬度,洛氏 R 115 115 ASTM D785 硬度,肖氏 D 85 85 ASTM D2240 拉伸强度 86.2 MPa 12500 psi ASTM D638 65°C (150°F) 时的拉伸强度 41.4 MPa 6000 psi ASTM D638 断裂伸长率 25 % 25 % ASTM D638 拉伸模量 3.31 GPa 480 ksi ASTM D638 弯曲强度 117 MPa 17000 psi ASTM D790 弯曲模量 3.17 GPa 460 ksi ASTM D790 压缩强度 110 MPa 16000 psi 10% Def.; ASTM D695 压缩模量 2.90 GPa 420 ksi ASTM D695 剪切强度 72.4 MPa 10500 psi ASTM D732 缺口悬臂梁冲击强度 0.267 J/cm 0.500 ft-lb/in ASTM D256 A 型摩擦系数,动态 0.20 0.20 干态与钢; QTM55007 K(磨损)系数 181 x 10 -8 mm ³ /NM 90.0 x 10 -10 in ³ -min/ft-lb-hr QTM 55010 极限压力速度 0.105 MPa-m/sec 3000 psi-ft/min 4:1 安全系数; QTM 55007 电气性能 公制 英制 注释 每平方表面电阻率 >= 1.00e+13 ohm >= 1.00e+13 ohm EOS/ESD S11.11 介电强度 13.8 kV/mm 350 kV/in 短期;ASTM D149 热性能 公制 英制 注释 CTE,线性 72.0 µ m/m- °C @温度 -40.0 - 149 °C