背景:如果转移灶可切除,结直肠癌 (CRC) 患者的预后会更好。最初,无法切除的仅有肝脏的转移灶可以通过化疗加靶向治疗转为可切除。我们评估了在这种情况下,双药化疗 (2-CTx) 或三药化疗 (3-CTx) 结合根据 RAS 状态的靶向治疗哪种方案效果更好。方法:PRODIGE 14 是一项开放标签、多中心、随机 2 期试验。最初定义为无法切除的仅有肝脏的转移灶的 CRC 患者根据 RAS 状态接受 2-CTx(FOLFOX 或 FOLFIRI)或 3-CTx(FOLFIRINOX)加贝伐单抗/西妥昔单抗治疗。主要终点是使用 3-CTx 将 R0/R1 肝切除率从 50% 提高到 70%。结果:患者(n = 256)主要为男性,ECOG PS 为 0,中位年龄为 60 岁。总共有 109 名患者(42.6%)患有 RAS 突变肿瘤。经过 45.6 个月的中位随访,3-CTx 的 R0/R1 肝切除率为 56.9%(95% CI:48 – 66),而 2-CTx 的 R0/R1 肝切除率为 48.4%(95% CI:39 – 57)(P = 0.17)。3-CTx 的中位总生存期为 43.4 个月,而 2-CTx 的中位总生存期为 40 个月。结论:对于最初无法切除肝转移的 CRC 患者,我们未能通过使用 3-CTx 联合贝伐单抗或西妥昔单抗根据 RAS 状态将 R0/R1 肝切除率从 50% 提高到 70%。
摘要 :全球范围内胰腺导管腺癌 (PDAC) 的死亡率正在增加,迫切需要有效的新治疗方法。目前,对适合患者的转移性 PDAC 的治疗基于两种化疗组合 (FOLFIRINOX 和吉西他滨加白蛋白结合型紫杉醇),这两种组合在 8 年多前就已得到验证。尽管迄今为止,几乎所有针对特定分子改变的治疗方法在对未经选择的患者进行治疗时都失败了,但在具有种系 BRCA 1/2 突变和体细胞基因融合(神经营养酪氨酸受体激酶、神经调节蛋白 1,在 KRAS 野生型 PDAC 中富集)、KRAS G12C 突变或微卫星不稳定性的患者小群体中观察到了令人鼓舞的结果。虽然靶向肿瘤代谢疗法和免疫疗法的效果令人失望,但它们仍在与其他药物联合使用中进行研究。优化药代动力学和根据分子特征调整可用的化疗是其他有前途的研究途径。本综述评估了目前可用治疗方法的期望和局限性,并分析了现有的试验。持续寻找 PDAC 肿瘤细胞和微环境中可操作的弱点可能会带来更个性化的治疗方法,请记住,如果要在这些患者身上实现真正的临床疗效,支持性护理也必须发挥重要作用。
胰腺导管腺癌 (PDAC) 是一种发病率不断上升的高度致命疾病。在大多数情况下,胰腺癌都已进入晚期,只有 20% 的病例可以接受手术切除。在患者预后结果方面,胰腺腺癌排名最后,总体 5 年生存率为 2-9% [1,2]。尽管随着新手术技术和药物疗法的引入,胰腺腺癌的治疗正在不断发展,但结果仅取得了微小的改善。由于耐药性高,化疗和放疗在转移性 PDAC 中收效甚微,只能略微延长患者的生存期 [3]。目前,转移性 PDAC 的治疗方案是,对于体能状态良好的患者采用改良 FOLFIRINOX/FOLFIRINOX 或白蛋白结合型紫杉醇和吉西他滨,对于体能状态较差的患者采用吉西他滨联合或不联合第二种药物 [4]。最近,研究 PDAC 免疫疗法更新的试验除具有微卫星不稳定性的腺癌亚组外,其余结果均为阴性[5]。考虑到缺乏有效的治疗方法,确定新的生物标志物和治疗靶点对于制定新的治疗策略和改善临床结果至关重要。最近的研究表明,涉及 STAT3 的信号通路在几种人类恶性肿瘤(如白血病、淋巴瘤)以及实体瘤(如肝细胞癌、食道癌、肺癌、前列腺癌、膀胱癌和乳腺癌)的肿瘤发生、进展和耐药性中起关键作用[6,7]。PDAC 动物模型表明,STAT3 是干细胞自我更新和癌细胞存活的重要调节器[8,9]。 STAT3 的上调已被证明能促进胰腺上皮肿瘤发展为 PDAC [ 10 , 11 ],以及肝脏中促转移微环境的形成 [ 12 ]。此外,STAT3 已被证明能介导化疗耐药性,并与 PDAC 根治性切除术后的不良后果有关 [ 13 – 15 ]。如图 1 所示,IL-6 型细胞因子(IL-6、IL-10、IL-11、白血病抑制因子 (LIF)、心脏营养素-1 (CT-1)、制瘤素-M (OSM)、睫状神经营养因子 (CNTF))结合糖蛋白-130 (GP130) 并激活 Janus 激酶 (JAK),进而磷酸化 STAT3 以及 PDAC 肿瘤细胞以及肿瘤微环境 (TME) 细胞中的其他信号介质 [ 16 ]。 PDAC 中的 TME 是一个复杂的系统,它由广泛的基质网络和不同的细胞成分组成,例如胰腺星状细胞 (PSC)、癌相关成纤维细胞 (CAF)、肿瘤相关巨噬细胞 (TAM)、肥大细胞、调节性 T 细胞和髓系抑制细胞 (MDSC),它们协同作用支持肿瘤进展、免疫逃避和转移扩散。TME 内不同细胞之间的相互作用由信号分子介导,例如通过 IL-6 型细胞因子激活 STAT3。例如,PDAC 肿瘤细胞可以刺激免疫细胞分泌 IL-6 型细胞因子,支持免疫抑制性 TAM 和 MDSC 的发育以及 PSC 和 CAF 的激活,进而通过正反馈回路诱导炎症细胞因子的分泌 [11,17-22]。因此,STAT3 激活通过抑制调节性 T 细胞驱动免疫细胞走向免疫抑制表型,进而维持肿瘤免疫逃逸。此外,STAT3 的磷酸化导致下游靶基因转录增强,从而促进血管生成、侵袭和上皮-间质转化 (EMT) [23]。因此,涉及 STAT3 的通路似乎是治疗 PDAC 的有希望的药物靶点。尤其是IL-6已被证实是克服化疗耐药性的潜在有效治疗方法。本研究旨在通过系统定性文献综述,全面总结针对胰腺腺癌GP130/JAK/STAT3通路的治疗方法。
胆道癌(BTC)是一种疾病实体,包括具有胆管细胞分化特征的多种上皮肿瘤,其中包括胆管癌(CCA)和胆囊癌(GBC)。取决于其解剖位置,胆管癌被归类为肝内(ICCA),椎骨(PCCA)或远端(DCCA)。近三分之二的胆道癌患者在诊断时患有晚期疾病,在68-86%的切除术中,癌症最终会在远处或远处出现。化学疗法是晚期或复发性BTC的一线治疗。随着下一代测序(NGS)指导的分子靶向治疗的发展,还有更多选择可用于治疗晚期BTC。化学疗法,尤其是基于吉西他滨/顺铂/nab-paclitaxel的三重疗法,具有最显着的作用,而氟尿嘧啶,白细胞素,Irinotecan和oxaliptin(folfirinox)与bevacizumab相结合。分子靶向疗法应基于基因组测序,并且对于精确医学至关重要。成纤维细胞生长因子受体(FGFR)抑制剂和异位酸脱氢酶(IDH)抑制剂的有望有望实现的靶向疗法主要用于ICCA。其他靶向疗法,例如抗人表皮生长因子受体-2(HER2)疗法,MEK抑制剂,BRAF抑制剂和Poly ADP核糖聚合酶(PARP)抑制剂的效果表现出了疗效。特别需要进一步评估组合策略。但是,在进行的几项研究中仍在评估ICIS。单独使用免疫检查点抑制剂(ICI)的有效性较小,但是根据许多病例系列的化学疗法或放射疗法,ICI除了化疗或放疗。组合疗法由于BTC中致癌的信号传导途径之间的相互作用而引起了人们的注意。
引入胰腺导管腺癌(PDA)患者的5年相对存活率为12%(1)。随着PDA的发病率继续升高(2),必须提高生存的策略。手术切除仍然是唯一的治疗方法。但是,由于诊断时存在转移,大多数患者都不符合资格(3)。护理标准化学治疗方案包括吉西他滨/nab-paclitaxel和folfirinox,它们的中位生存时间分别为8.5和11.1个月(4,5)。此外,由于肿瘤生物学和治疗反应中的异质性继续被揭示,因此,具有良性的医学方法变得越来越必要。使用患者衍生的类器官(PDOS)有可能改变PDA患者的护理(6)。pdos是在定义的条件下的3D培养物,可支持原发性组织的正常,预施加剂和肿瘤细胞的传播(7-11)。类器官技术已成为精密医学的有前途的途径(12)。从手术切除术,快速尸检(RAP)和内窥镜超声引导的细针活检中得出PDA PDO的能力允许对PDA患者进行广泛的采样,以涵盖室内和肠内肿瘤的异质性(8)。重要的是,PDA PDOS镜面患者肿瘤遗传学,基因表达和治疗反应,将它们视为有前途的工具,以进行更精确的医学工作,以识别替代治疗策略(8,13-15)。最近的研究描述了使用由于使用器官的使用已经扩展并变得更加易于接近,因此引入了培养条件的变化,以优化PDA PDO的产生和生长。许多研究描述了液体培养基组成对器官表型,转录组和药物反应的影响(16、17)。支持器官研究的商业产品已变得更加广泛,并包括各种地下室膜提取物(BME),它们用作3D支架。
胰腺癌是当今最致命的恶性肿瘤之一。2020年全球肿瘤登记数据显示,胰腺癌在恶性肿瘤中发病率位居第12位,但死亡率位居第7位(Hu等,2021)。其主要特点是进展迅速,预后极差。我国胰腺癌五年生存率仅为7.2%,是所有肿瘤类型中最低的(Zhao等,2019)。大多数患者在发现肿瘤时已诊断为局部晚期胰腺癌或远处转移,因此只有15%-20%的患者有机会接受预后较好的手术治疗(Van Veldhuisen等,2019)。 2015 年中国共诊断出 95,000 例新发胰腺癌病例,死亡 85,000 例,男性和城市地区的发病率和死亡率普遍较高( Jia et al., 2018 )。自 1997 年以来,吉西他滨一直是晚期胰腺癌的标准化疗方案。多项 III 期临床试验尝试使用吉西他滨进行化疗以改善疗效。然而,除两项研究外,大多数试验均未显示总体生存率有所改善。一项关于厄洛替尼和吉西他滨联合治疗的 III 期试验显示,与单独使用吉西他滨相比,疗效改善非常有限( Moore et al., 2007 )。此外,在 ACCORD 11 研究中,FOLFIRINOX 化疗(五氟尿嘧啶、奥沙利铂和伊立替康与亚叶酸)取得了更好的效果,与吉西他滨相比,总生存期提高了 4 个多月(从 6.8 个月到 11.1 个月)(Conroy 等人,2010 年)。然而,多药化疗的巨大毒性往往限制了它的使用,以至于一些患者拒绝它。因此,迫切需要一种更有效、毒性更小的胰腺癌治疗方式。研究得出结论,大多数胰腺癌是缺血肿瘤,血管生成不显著,因此,关于用于临床治疗的抗血管生成药物的数据很少。但有研究显示仑伐替尼治疗胰腺神经内分泌肿瘤的ORR高达44.2%,DCR为96.2%,证明了其有效性(Capdevila等,2021)。其他胰腺肿瘤无靶向联合治疗的病例也有报道,如一位55岁的胰腺癌患者(cT4N1M1),携带ERBB2突变,肿瘤突变负荷(TMB)高,出现肝肺转移,接受仑伐替尼联合帕博利珠单抗治疗,在一系列治疗失败后,获得了长达5个月的部分缓解(Chen等,2019)。一名 48 岁的转移性胰腺肺泡细胞癌患者接受仑伐替尼和信迪利单抗治疗后,肿瘤获得显著缓解,长期无进展生存期达到 > 21 个月 (Qin et al., 2021)。以上数据表明,仑伐替尼联合免疫药物可能在胰腺癌临床治疗中发挥疗效。淫羊藿素软胶囊是中国自主知识产权的原创小分子免疫调节剂,是全球首创的原创药物,已在国际上获得FDA批准。
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。