光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。
在高电阻率 200 mm <111> Si 上采用 Cu 大马士革 BEOL 工艺开发与 Si 代工厂兼容的高性能 ≤0.25 µm 栅极 GaN-on-Si MMIC 工艺 Jeffrey LaRoche 1 、Kelly Ip 1 、Theodore Kennedy 1 、Lovelace Soirez 2 、William J. Davis 1 、John P. Bettencourt 1 、Doug Guenther 2 、Gabe Gebara 2 、Tina Trimble 2 和 Thomas Kazior 1 1 Raytheon IDS Microelectronics,362 Lowell St.,Andover,MA 01810 电子邮件:jeffrey_r_laroche@raytheon.com 电话:(512)-952-2927 2 Novati Technologies, Inc.,2706 Montopolis Drive,Austin,TX 78741 关键词:GaN、HEMT、硅、MBE、大马士革、200 mm 摘要 雷神公司正在开发一种 200 mm GaN on Si MMIC 工艺,该工艺适用于独立的高频 MMIC 应用,以及与 Si CMOS、SiGe BiCMOS 和其他 III-V 族的异质集成。在之前的 100 mm 和 200 mm GaN-on-Si 工作 [1-5] 的基础上,这项工作报告了在完全集成的 MMIC 方面取得的进展,以及在 200 mm 直径的 Si 晶片上实现世界上第一个 X 波段 GaN 0.25 µm 功率晶体管。这种 GaN-on-Si HEMT 在 V d = 28 V 时可提供 4.7 W/mm 的功率和 9 dB 的增益,PAE 为 49%。晶圆由商业 CMOS 代工厂 Novati Technologies 制造,采用完全减成、无金、类硅的制造方法。简介 在过去十年中,氮化镓 (GaN) 在电力电子以及高功率密度和高线性度 RF 应用中引起了广泛关注。很显然,200 mm 硅基 GaN 晶圆的大规模商业化生产将由电力电子应用推动。然而,随着这些应用开始填充 200 mm 代工厂,高性能硅基 GaN RF MMIC 应用将自然跟进,并利用大直径晶圆和背景晶圆体积来降低 RF IC 的成本。除了在 200 mm 晶圆上制造的硅基 GaN MMIC 的成本优势之外,与芯片到晶圆方法相比,大直径晶圆制造还为 GaN HEMT 与硅 CMOS 的异质集成(以实现附加功能)提供了优势。虽然与芯片到晶圆集成兼容,但 200 毫米 GaN IC 与 200 毫米 CMOS 的晶圆到晶圆异质集成在缩短互连长度和提高高密度、高性能 IC 产量方面更有前景。为了促进未来成本、产量和功能的改进,雷神公司正在高电阻率 200 上开发亚微米(≤0.25 µm 栅极)GaN-on-Si MMIC 工艺
拉伸片材上具有热场和磁场的驻点流* 1 Yahaya Shagaiya Daniel、2 Aliyu Usman、2 Umaru Haruna 1 尼日利亚卡杜纳州立大学理学院数学科学系。 2 马卡菲谢胡伊德里斯健康科学与技术学院生物医学工程技术系。 *通讯作者电子邮箱地址:Shagaiya12@gmail.com 摘要 本研究旨在检验热辐射和磁场对拉伸片材二维驻点流的影响。通过相似变换法将控制方程转化为非线性常微分方程组,然后利用隐式有限差分方案进行数值求解。驻点参数值越高,速度分布越增大,磁场则相反。温度分布是辐射能量的增函数。 关键词:热辐射、磁场、驻点流、拉伸片材。引言考虑到流动对介质的冲击会在表面周围形成一个驻点 (Hayat 等人,2020)。流动离开介质的消失会在尾随表面上产生另一个驻点 (Khan 等人,2020)。不可压缩粘性流体在拉伸片材上的流动和传热已在工业领域的许多过程中得到研究:聚合物的机械化挤出、金属板的冷却、塑料片材的空气动力挤出等 (Daniel 等人,2017a;Khashi'ie 等人,2020;Nandepnavar 等人,2021;Daniel 等人 2017b;Nadeem 等人 2020;Daniel 等人 2019a;Ghasemi & Hatami,2021 和 Daniel 等人,2019b)。 MHD 在拉伸板上的停滞流至关重要,因为它可应用于多种工程挑战,例如金属铸造厂的快速喷雾冷却和淬火、紧急核心冷却系统、微电子冷却、熔融纺丝工艺中的聚合物挤出、玻璃制造和原油净化 (Oyelakin et al., 2020; Anuar et al., 2020; Daniel, 2015; Nasir et al., 2020; Daniel and Daniel, 2015 and Lund et al., 2020)。当科学过程在高热能下进行时,例如金属或玻璃板的冷却,热辐射影响开始显示出不容忽视的重要作用 (Daniel et al., 2017c; Zainal et al., 2021 and Chaudhary et al., 2021)。许多研究人员已经讨论了不可压缩粘性流体的 MHD 流动和传热问题,包括文献(Maqbool 2020;Daniel 等人,2017;Hussain 等人,2020;Daniel 等人,2018;Afify 等人 2020 和 Daniel 2016)等。在目前的研究中,对共轭传导-对流和辐射传热问题进行了新的驻点流和能量转换研究。磁场用于控制和操纵流动行为,以提高热导率和传热性能。对流辐射传热模型