摘要我们使用图形卷积神经网络(GCNN)来快速准确地预测固体溶液二元合金的总能量。gcnns允许我们抽象固体物质的晶格结构作为图,从而将原子建模为节点和金属键作为边缘。此表示自然结合了有关材料结构的信息,从而消除了对标准神经网络(NN)方法所需的计算昂贵数据预处理的需求。我们在Ab-Initio密度功能理论(DFT)上训练GCNN,用于铜金(CuAU)和铁铂(FEPT)数据,这些数据是通过运行LSMS-3代码而生成的,该数据实现了OLCF SuperCutisters titan and Immit的LSMS-3代码,该代码实现了本地自称的多重散射方法。gcnn在计算时间方面,按数量级胜过Ab-Initio dft模拟,以产生给定的原子结构的总能量的估计。我们通过使用根平方的误差来量化深度学习(DL)模型的预测质量,将GCNN模型与标准NN的预测性能进行比较。我们发现,GCNN的可达到的准确性至少比MLP的数量级好。
本文提出了一种新型的图形卷积神经网络(GCNN) - 使用头皮电脑图(EEGS)改善神经疾病诊断的方法。尽管脑电图是用于神经疾病诊断的主要测试之一,但基于脑电图的专家视觉诊断的敏感性仍为约50%。这表明需要先进的方法学以降低检测频率的假阴性率。在这种情况下,我们着重于区分神经系统疾病患者头皮异常的脑电图的问题,这些患者最初被专家与健康个体的头皮EEG分类为“正常”。本文的贡献是三个方面:1)我们提出EEG-GCNN,EEG-GCNN是EEG数据的新型GCNN模型,可捕获头皮电极之间的空间和功能连接性,2)使用EEG-GCNN,我们使用EEG-GCNN,我们使用上面的两个大规模评估了两个大型假设,并使用两个大型假设进行了大规模评估。 EEG-GCNN显着胜过人类基线和经典机器学习(ML)基准,AUC为0.90。关键词:脑电图,早期诊断,神经疾病,图CNN
本文提出了一种基于图卷积神经网络 (GCNN) 的新型方法,用于改进使用头皮脑电图 (EEG) 诊断神经系统疾病的方法。尽管脑电图是用于神经系统疾病诊断的主要测试之一,但基于脑电图的专家视觉诊断的灵敏度仍然约为 50%。这显然表明需要先进的方法来降低检测异常头皮脑电图的假阴性率。在此背景下,我们重点关注如何区分神经系统疾病患者的异常头皮脑电图(最初被专家归类为“正常”)与健康个体的头皮脑电图。本文的贡献有三方面:1)我们提出了 EEG-GCNN,这是一种用于 EEG 数据的新型 GCNN 模型,可以捕捉头皮电极之间的空间和功能连接;2)使用 EEG-GCNN,我们对上述假设进行了首次大规模评估;3)使用两个大型头皮 EEG 数据库,我们证明 EEG-GCNN 明显优于人类基线和经典机器学习 (ML) 基线,AUC 为 0.90。
脑瘤是成人和儿童第十大致死原因。及早发现和治疗可显著提高存活率。深度学习的最新进展已显示出使用磁共振成像 (MRI) 扫描识别和分类脑瘤的前景。本文介绍了一种集成经典和混合量子启发式图神经网络进行肿瘤分类的新方法。经典图卷积神经网络 (GCNN) 分析医学成像数据中的复杂关系,而混合量子图神经网络 (QGNN) 利用量子计算原理来提高性能。先前的研究强调了脑成像数据的多样性所带来的挑战。本研究比较了各种分类方法,强调架构、训练技术和性能指标。目的是训练和评估从 MRI 扫描中识别脑瘤的模型。混合 QGNN 表现出与先进的经典 GCNN 相当的准确度和损失指标,训练期间准确度从 0.41(41%)提高到 0.64(64%),验证数据集中的准确度从 0.31(31%)提高到 0.52(52%),从而展示了其在区分正常和肿瘤图像方面的有效性。
摘要 - 运动计划对于复杂的城市环境中的安全导航至关重要。从历史上看,运动策划者(MPS)已通过像卡拉这样的程序生成的模拟者进行了评估。但是,这种综合基准不会捕获现实世界的多代理相互作用。最近发布的MP基准标准 NUPLAN通过使用闭环仿真逻辑来增强现实世界驱动日志来解决此限制,从而有效地将固定的数据集变成了反应性模拟器。 我们分析了Nuplan记录的日志的特征,并发现每个城市都有其独特的驾驶行为,这表明健壮的计划者必须适应不同的环境。 我们学会用行为者(GravieNet)模拟这种独特的行为,该行为是一种图形卷积神经网络(GCNN),该卷积神经网络(GCNN)使用来自最近观察到的试剂历史的特征来预测反应性剂行为;从直觉上讲,一些侵略性的特工可能会导致铅车辆,而另一些则可能不会。 为了建模这种现象,cavenyet预测了代理运动控制器的参数,而不是直接预测其时空轨迹(就像大多数预报符一样)。 最后,我们提出了基于模型预测控制(MPC)计划者的AdapTivedRiver,该计划者展开了以行为网的预测为条件的不同世界模型。 我们的广泛实验表明,AdaptivedRiver在NUPLAN闭环计划基准上取得了最先进的结果,在14个硬式R-CLS上对先前的工作提高了2%,即使对从未见过的城市进行评估时也可以概括。NUPLAN通过使用闭环仿真逻辑来增强现实世界驱动日志来解决此限制,从而有效地将固定的数据集变成了反应性模拟器。我们分析了Nuplan记录的日志的特征,并发现每个城市都有其独特的驾驶行为,这表明健壮的计划者必须适应不同的环境。我们学会用行为者(GravieNet)模拟这种独特的行为,该行为是一种图形卷积神经网络(GCNN),该卷积神经网络(GCNN)使用来自最近观察到的试剂历史的特征来预测反应性剂行为;从直觉上讲,一些侵略性的特工可能会导致铅车辆,而另一些则可能不会。为了建模这种现象,cavenyet预测了代理运动控制器的参数,而不是直接预测其时空轨迹(就像大多数预报符一样)。最后,我们提出了基于模型预测控制(MPC)计划者的AdapTivedRiver,该计划者展开了以行为网的预测为条件的不同世界模型。我们的广泛实验表明,AdaptivedRiver在NUPLAN闭环计划基准上取得了最先进的结果,在14个硬式R-CLS上对先前的工作提高了2%,即使对从未见过的城市进行评估时也可以概括。
抽象的智能手机接收器包括大约15亿个全球赛车卫星系统接收器。智能手机接收器的信号水平较低,噪音较低,而噪声则比Commer CIAL接收器更高。由于对尺寸,重量,功耗和成本的限制,与这些接收器进行准确的定位尤其是在城市环境中,这是一项挑战。传统上,全球定位系统测量方法是通过基于模型的方法(例如加权最小二乘和卡尔曼过滤方法)处理的。基于模型的方法可以以后处理方式提供仪表级的定位精度,但这些方法需要对相应的噪声模型进行牢固的假设,并且需要对参数(例如协方差)进行手动调整。相比之下,已经提出了基于学习的方法,这些方法对数据结构做出了更少的假设,并且可以准确地对环境特定的错误进行建模。但是,这些方法比基于模型的方法提供了较低的精度,并且对初始化敏感。在本文中,我们提出了一个用于学习校正的混合框架,该框架对应于真实接收器姿势和估计位置之间的偏移。对于基于学习的方法,我们提出了一个图形卷积神经网络(GCNN),该神经网络可以学习具有多构造和多频信号的不同图形结构。为了更好地对GCNN进行初始化,我们使用Kalman滤波器来估计一个粗糙的接收器位置。然后,我们使用此粗糙接收器位置来调节输入特征到图。我们从Google智能手机分解挑战中测试了对现实世界数据集的建议方法,并比基于模型的方法(例如加权最小二乘和卡尔曼过滤器方法)显示出改进的定位性能。
1.简介 随着计算能力的提高,机器学习为加速初始设计阶段的船舶工程师工作流程提供了新的机会。以往往具有较高相对计算成本的开放水域计算为例,本文表明将测地线卷积神经网络 (GCNN) 等机器学习算法应用于此类计算很有前景,并且可以将初始设计过程的生产率提高几个数量级。因此,本研究的目的是描述该方法并讨论将 GCNN 应用于开放水域计算的结果,使用遵循瓦赫宁根 B 系列螺旋桨系列设计的几何形状,并探索通过将人工智能应用于船舶 CFD 结果可以实现的生产率提高。2.方法 2.1。使用 CFD 生成和验证几何形状 瓦赫宁根 B 系列螺旋桨系列被选为实验设计 (DoE) 的“母”系列。此系列中的螺旋桨由四个参数描述:直径 D、展开面积比 EAR、叶片数量 Z 和螺旋桨螺距 P。如果直径保持不变 (D = 1 m),则几何形状完全由 EAR、Z 和 P 描述。螺旋桨使用 Rhino 3D 结合 Grasshopper 以及专有 Python 代码建模,该代码包含基于 Kuiper (1992) 中描述的定义进行的截面几何描述。使用 NURBS 将二维截面开发为三维叶片。Van Oossanen 和 Oosterveld (1975) 根据荷兰海事研究所 (MARIN) 进行的早期模型测试的回归分析,开发了适用于任何瓦赫宁根 B 系列螺旋桨的开阔水域性能曲线描述。推力和扭矩系数曲线的原始描述在雷诺数为 2,000,000 时有效。随后将这些回归曲线与选定数量的螺旋桨和操作条件的 CFD(计算流体动力学)结果进行比较,以验证创建的螺旋桨几何形状是否产生了与瓦赫宁根 B 系列相对应的预期结果。
摘要 — 人类情感与多个分布式大脑区域密切相关,并且区域之间存在功能联系。然而,如何抽象区域级信息以提高脑电图 (EEG) 情感识别性能尚未得到很好的考虑。为了解决这个问题,我们提出了一种新颖的自适应分层图卷积网络 (AHGCN),它包括 EEG 通道的基本通道级图和大脑区域的区域级图。与以前的方法不同,我们提出了一种自适应池化操作来自动划分大脑区域而不是手动定义它们。为了捕捉大脑区域或 EEG 通道之间的内在功能联系,我们设计了一个门控自适应图卷积操作。此外,我们开发了一个图解池化操作来整合区域级图和通道级图以提取更多用于分类的判别特征。在两个广泛使用的数据集上的实验表明,我们提出的方法优于许多最先进的 EEG 情感识别方法,并且可以找到一些有趣的 EEG 通道组合。索引词——EEG 情绪识别、图卷积神经网络 (GCNN)、图池化
摘要。本篇评论探讨了神经网络与建筑之间的关系,特别是在外观设计、室内设计和建筑施工领域。它研究了两种类型的神经网络:生物神经网络,代表人类大脑的神经系统;人工智能,受大脑结构和功能启发的计算系统。本研究对这些神经网络及其在各个领域的应用进行了描述性概述。它进一步研究了这些网络如何在不同层面与建筑相结合。该研究强调了“神经架构”的概念,它将人工神经网络 (ANN) 与建筑相结合,以产生多种设计可能性并揭示隐藏的模式。ANN 用于创建智能建筑和优化结构设计流程以降低成本。此外,该研究还探索了“神经架构”,它探索了生物神经网络 (BNN) 与建筑的相互作用,重点关注建筑环境对大脑和行为的影响。它结合了神经科学、建筑和环境心理学的原理。案例研究分析表明,“pix2pix”、GCNN、DCGAN、CycleGAN 和 StyleGAN 等 AI 工具在通过融合传统和现代风格以及增强创作过程来实现建筑设计的现代化方面的重要性。
情绪的反映有两种,包括外部反应和内部反应:外部反应包括人的面部表情、手势或言语等;内部反应包括皮肤电反应、心率、血压、呼吸频率、脑电图(EEG)、脑电图(EOG)(Yu et al., 2019)、脑磁图(MEG)(Christian et al., 2014)。从神经科学的角度(Lotfiand Akbarzadeh-T., 2014)发现,大脑皮层的主要区域与人的情绪密切相关(Britton et al., 2006; Etkin et al., 2011; Lindquist and Barrett, 2012),这启发我们通过在头皮上放置脑电电极来收集脑电信号,记录大脑的神经活动,从而识别人的情绪。脑电信号蕴含着情绪信息,近年来在情绪识别领域得到了广泛的应用(Soroush et al.,2017;Sulthan et al.,2018;Alarcao and Fonseca,2019)。在传统的脑电情绪识别过程中,特征提取是至关重要的步骤。如图1所示,在对脑电信号进行预处理后,通常需要从原始脑电信号中提取特征,然后输入到网络进行分类识别(Duan et al.,2013;Chen et al.,2021;Ma et al.,2021)。Duan等(2013)提出了五频带的差分熵(DE)特征,并利用DE特征获得了满意的分类结果。Li et al. (2019) 利用短时傅里叶变换提取时频特征,计算 theta、alpha、beta、gamma 波段的功率谱密度 (PSD) 特征,并使用 LSTM 进行情绪判别,取得了显著的分类结果。马等 (2021) 提出了一种甲虫天线搜索 (BAS) 算法,该算法在三个不同波段和六个通道中提取三个不同的特征,并采用 SVM 分类器进行分类。与传统 SVM 方法相比,BAS-SVM 方法的分类准确率提高了 12.89%。近年来,深度学习方法被广泛应用于情绪识别 (Jia et al.,2020a;Li et al.,2020;Zhou et al.,2021)。宋等 (2021) (2018) 根据电极位置设计 DE 特征,并使用图卷积神经网络 (GCNN) 作为分类器。张等 (2019) 创新性地将从脑电数据集中提取的 DE 特征与从面部表情数据集中提取的特征相结合,构建了时空循环神经网络 (STRNN) 用于情绪识别。李等 (2018) 提出了一种双半球域对抗神经网络 (BiDANN),以 DE 作为输入特征,在 SEED 数据集上进行了受试者相关和受试者独立的实验,取得了相对最佳的性能。郝等 (2021) 提出了一种提取 PSD 特征作为输入的轻量级卷积神经网络,并在 DEAP 数据集上进行了实验,分别取得了 82.33 和 75 的成绩。Valance 和 Arousal 分别为 46%。Chen 等人 (2021) 提出了一种集成胶囊卷积神经网络 (CapsNet),该网络使用小波包变换 (WPT) 进行特征提取。平均