摘要 - 强化学习以其能够对顺序任务进行建模和学习潜在数据模式的能力而闻名。深度学习模型已在回归和分类任务中广泛探索和采用。但是,深度学习具有其局限性,例如假设均等和有序数据,以及缺乏在时间序列预测方面合并图形结构的能力。图形性化neu-ral网络(GNN)具有克服这些挑战并捕获时间序列数据中的时间依赖性的能力。在这项研究中,我们提出了一种新的方法,用于使用GNN和增强学习(RL)监测时间序列数据。gnns能够将数据的图形结构明确地纳入模型,从而使它们能够以更自然的方式捕获时间依赖性。这种方法允许在复杂的时间结构中进行更准确的预测,例如医疗保健,交通和天气预报中的预测。我们还使用贝叶斯优化技术来微调我们的GraphRl模型,以进一步提高性能。所提出的框架在时间序列预测和监视中优于基线模型。本研究的贡献包括引入时间序列预测的新型GraphRl框架,以及与传统深度学习模型(例如RNN和LSTMS)相比,GNNS的有效性的证明。总体而言,这项研究证明了GraphRL在动态RL环境中提供准确有效的预测的潜力。
理解神经动力学的空间和时间特征之间的相互作用有助于我们理解人类大脑中的信息处理。图神经网络 (GNN) 为解释复杂大脑网络中观察到的图结构信号提供了一种新的可能性。在我们的研究中,我们比较了不同的时空 GNN 架构,并研究了它们对功能性 MRI (fMRI) 研究中获得的神经活动分布进行建模的能力。我们评估了 GNN 模型在 MRI 研究中各种场景下的性能,并将其与 VAR 模型进行了比较,后者目前常用于定向功能连接分析。我们表明,通过学习解剖基底上的局部功能相互作用,基于 GNN 的方法能够稳健地扩展到大型网络研究,即使在可用数据稀缺的情况下也是如此。通过将解剖连接作为信息传播的物理基础,此类 GNN 还提供了定向连接分析的多模态视角,为研究大脑网络中的时空动态提供了一种新的可能性。
抽象的2D图像理解是计算机视觉中的一个复杂问题,但它是提供人级场景理解的关键。它比识别图像中的对象更进一步,而是尝试理解场景。解决此问题的解决方案构成了一系列任务的基础,包括图像字幕,视觉问题答案(VQA)和图像检索。图提供了一种自然的方式来表示图像中对象之间的关系布置,因此,近年来,图形神经网络(GNN)已成为许多2D图像理解管道的标准组成部分,成为核心体系结构组件,尤其是在VQA任务中。在本调查中,我们回顾了这种快速发展的场,并提供了2D图像理解方法中使用的图形类型的分类法,该域中使用的GNN模型的全面列表以及未来潜在发展的路线图。据我们所知,这是第一个综合调查,涵盖图像字幕,视觉问题的答案和图像检索技术,其重点是将GNN用作其架构的主要部分。
链接预测是图数据中的一个基本问题。在其最现实的环境中,问题包括预测一组断开对的节点对之间的丢失或将来的联系。图形神经网络(GNN)已成为链接预测的主要框架。基于GNN的方法将链接预测视为二进制分类问题,并处理极端类不平衡 - 真实图非常稀疏 - 通过对(随机均匀)进行抽样(随机均匀),不仅是用于培训,而且用于评估的脱节对。但是,我们表明,在平衡设置中链接预测的GNN的报告并不能转化为更现实的不平衡设置,并且在han-dling稀疏性方面,基于更简单的基于拓扑的方法通常会更好。这些发现激发了基于相似性的链接预测方法,该方法采用(1)基于节点属性的图形学习来增强拓扑启发式启发式,(2)解决类不平衡的排名损失,以及(3)负面采样方案,通过图分划分有效地选择硬训练对。实验表明,冰淇淋的表现优于现有的基于GNN的替代方案。
抽象图神经网络(GNNS)是用于图形相关任务的强大工具,在进步的图形结构化数据中表现出色,同时保持置换不变性。然而,他们的挑战在于新节点表示的晦涩,阻碍了解释性。本文通过解释GNN预测来介绍一个框架,该框架解决了这一限制。所提出的方法采用任何GNN预测,为此,它将简洁的子图作为解释。利用显着性图,这是一种基于归因梯度的技术,我们通过通过反向传播将重要性得分分配给具有知识图的实体来增强可解释性。在药物重新利用知识图上进行了评估,图表网络的命中率为@5分为0.451,命中@10分数为0.672。图显示了明显的结果,最高召回率为0.992。我们的框架强调了GNN功效和可解释性,这在诸如药物重新利用之类的复杂情况下至关重要。通过阿尔茨海默氏病案例研究进行了说明,我们的方法为GNN预测提供了有意义且可理解的解释。这项工作有助于提高GNN在现实世界应用中的透明度和实用性。
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
图神经网络(GNN)在广泛的应用领域中已显示出良好的效果。大多数 GNN 实证研究直接将观察到的图作为输入,假设观察到的结构完美地描述了节点之间准确和完整的关系。然而,现实世界中的图不可避免地是有噪声的或不完整的,这甚至会降低图表示的质量。在本文中,我们从信息论的角度提出了一种新的变分信息瓶颈引导的图结构学习框架,即 VIB-GSL。VIB-GSL 是首次尝试推进图结构学习的信息瓶颈 (IB) 原理,为挖掘底层任务相关关系提供了更优雅、更通用的框架。VIB-GSL 学习一种信息丰富且压缩的图结构,以提炼出特定下游任务的可操作信息。 VIB-GSL 对不规则图数据推导变分近似,形成易处理的 IB 目标函数,有利于提高训练稳定性。大量实验结果表明 VIB-GSL 具有良好的有效性和鲁棒性。
摘要 - 流向基因型到表型模型,例如多基因风险评分,仅考虑基因型与表型之间的线性关系,而忽略了上皮相互作用,从而限制了可以正确表征的疾病的复杂性。蛋白质 - 蛋白质相互作用网络具有改善模型性能的潜力。此外,蛋白质水平的相互作用可以对理解疾病的遗传病因以及对药物发育产生深远的影响。在本文中,我们提出了一种基于图神经网络(GNN)的表型预测的新方法,该方法自然地将现有蛋白质相互作用网络纳入模型。因此,我们的方法自然可以发现相关的同义互动。我们使用模拟评估了这种方法的潜力,并将其与线性和其他非线性方法进行比较。我们还研究了拟议的基于GNN的方法在预测阿尔茨海默氏病(最复杂的神经退行性疾病之一)方面的性能,其中我们的GNN接近最先进的方法。此外,我们表明我们的建议能够发现阿尔茨海默氏病的关键相互作用。我们的发现突出了GNN在预测表型和发现复杂疾病的潜在机制方面的潜力。
摘要 — 使用结构或功能连接来映射人脑的连接组已成为神经成像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经成像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的实证证据,并为这一新颖且有前景的方向的未来研究提供见解。
摘要 — 使用结构或功能连接来映射人脑的连接组已成为神经成像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经成像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的实证证据,并为这一新颖且有前景的方向的未来研究提供见解。