我们展示了高阶波混频/高次谐波产生(HWM/HHG)的数值研究结果,其中考虑了石墨烯量子点(GQD)中双频圆形强激光场引起的多粒子相互作用过程。显示了这种激光场的相对相位对 GCT 中产生的高阶谐波光谱的影响。这可以控制产生的谐波的极化。 GCT 由紧密耦合的最近邻 (TN) 模型描述。扩展哈伯德近似考虑了多粒子相互作用。我们利用已经应用的方法来解决带电载流子局部表示中的量子动力学方程,并获得了 GQD 中 SVV/SHG 过程的一般公式。对所得结果的分析证实了在双频圆形激光场的某些相位下,具有锯齿状边缘的三角形和六边形GCT中SHG具有足够的效率。
GQD和TMX-FPG的形态由FESEM和HRTEM确定3 a至l。为了研究制造样品的理化特性,例如平均水动力直径和多分散性指数(PDI),实施了DLS仪器方法。这些评估被认为是评估和预测癌症治疗中药物输送系统性能的最突出的分析,因为纳米载体的各个方面与纳米载体的直径和分散性直接或间接相关[31,32]。平均粒径为294.7 nm,对于用于药物输送的纳米颗粒的尺寸是可取的[33]。另一方面,通过应用FESEM和HRTEM确定合成样品的大小,形状和形态。基于结果,确定的平均粒径大于
可打印的光学活性材料有限,需要定制的墨水配方。为了解决功能材料的有限可用性用于光电设备的喷墨制造,需要探索适用于具有不同组成的纳米颗粒的多功能墨水配方策略。这还将为在单个设备中探索多个纳米颗粒的探索新机会,以达到特定的光谱敏感性。在这里,我们开发了GQD的可打印墨水公式,nay-f 4:(20%yb和/或2%ER掺杂)UCNPS和PBS QDS Inks,并展示了它们用于基于石墨烯的光电探测器和荧光显示器等设备。通过开发和优化墨水配方,打印策略和沉积技术,以可控的方式沉积了光敏的纳米材料层,并将其集成到印刷的异质结构中。我们通过将其用作单层石墨烯(SLG)光电材料中的表面函数化层来体现纳米材料墨水制剂的潜力,其中可以实现r b 10 3 a w 1的光反应率,并且可以从gqd/slg到nir/slg和slg和slg dep dep dep and slg and slg和ppb and slg和pbs slg和pbs slg slg and slg slg和pps。我们还探索了多个墨水的沉积到一个结构中,说明可以产生诸如荧光显示器之类的设备,因为我们在此处使用CSPBBR 3 Perovskite NCS和UCNP喷墨印刷在柔性透明底物上。这项工作扩展了可打印的光活性纳米材料的材料库,并展示了其前瞻性用于印刷光电材料(包括柔性设备)。
摘要:实体瘤是全球癌症相关死亡的主要原因,其特点是肿瘤生长迅速、局部和远处转移。癌症治疗失败主要与肿瘤微环境的复杂生物学有关。基于纳米粒子 (NPs) 的方法已显示出克服实体癌病理生理特征所造成的限制的潜力,从而能够开发用于癌症诊断和治疗的多功能系统,并有效抑制肿瘤生长。在不同类型的 NPs 中,基于二维石墨烯的纳米材料 (GBN) 因其出色的化学和物理特性、易于进行的表面多功能化、近红外 (NIR) 光吸收和可调节的生物相容性,代表了开发用于治疗实体瘤的治疗诊断工具的理想纳米平台。本文回顾了基于石墨烯、氧化石墨烯 (GO)、还原氧化石墨烯 (rGO) 和石墨烯量子点 (GQD) 的纳米系统合成的最新进展,用于开发用于光声成像引导的光热化疗、光热 (PTT) 和光动力疗法 (PDT) 的治疗诊断 NP,应用于实体肿瘤破坏。本文讨论了每类 GBN 使用这些纳米系统的优势,同时考虑到不同的化学性质和多功能化的可能性,以及生物分布和毒性方面,这些方面是将其转化为临床应用的关键挑战。
摘要:二维石墨烯薄膜和石墨烯衍生物在光电应用方面有巨大的潜力,引起了广泛的兴趣。然而,提高基于石墨烯薄膜和石墨烯衍生物的光电探测器性能仍然是一个巨大的挑战。通过用垂直取向石墨烯 (VOG) 替换石墨烯薄膜,然后用石墨烯量子点 (GQDs) 功能化,在锗 (Ge) 异质结 (指定为 GQDs/VOG/Ge) 上组装一个功能性 VOG,用于近红外光探测。GQDs 和 VOG 在光吸收和电子传输方面的协同效应增强了光电探测器的性能。对 VOG 进行功能修饰是调控 VOG 费米能级、增加肖特基结的内建电势以及促进光生电子和空穴对分离的有效方法。制成的光电探测器在波长 1550 nm 处表现出优异的响应度 (1.06 × 10 6 AW − 1 ) 和探测度 (2.11 × 10 14 cm Hz 1/2 W − 1 )。对光响应的研究表明,响应速度具有微秒的上升/下降时间,并且具有优异的可重复性和长期稳定性。结果揭示了一种制造高性能石墨烯基光电探测器新结构的简单策略。关键词:GQD、垂直取向石墨烯、锗、协同效应、内置电位、光电探测器■简介