掺铒GaN(Er:GaN)由于其优于合成石榴石(如Nd:YAG)的物理特性,是固态高能激光器(HEL)新型增益介质的有希望的候选材料。Er:GaN在1.5μm区域发射,该区域对视网膜是安全的并且在空气中具有高透射率。我们报告了对通过氢化物气相外延(HVPE)技术合成的Er:GaN外延层进行的光致发光(PL)研究。HVPE生长的Er:GaN外延层的室温PL光谱在1.5μm和1.0μm波长区域分别分辨出多达11条和7条发射线,这对应于GaN中Er3+从第一(4I13/2)和第二(4I11/2)激发态到基态(4I15/2)的斯塔克能级之间的4f壳层内跃迁。这些跃迁的观测峰值位置使得我们能够构建 Er:GaN 中的详细能级。结果与基于晶体场分析的计算结果非常吻合。精确确定 4 I 11/2、4 I 13/2 和 4 I 15/5 状态下斯塔克能级的详细能级对于实现基于 Er:GaN 的 HEL 至关重要。© 2020 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可(http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0028470
0D 零维 1D 一维 2D 二维 3D 三维 AFM 原子力显微镜 AI 人工智能 AM 增材制造 AMO DOE 先进制造办公室 aPPO 无定形聚环氧丙烷 BES DOE 基础能源科学办公室 BRN 基础研究需求 CAMERA 能源研究应用高级数学中心 CT 计算机断层扫描 DFT 密度泛函理论 DOE 能源部 DPD 耗散粒子动力学 EDS 能量色散 x 射线光谱 EJ 艾焦耳 FEL 自由电子激光器 fs 飞秒 GHG 温室气体 HEDM 高能衍射显微镜 HPC 高性能计算 HTE 高通量实验 iPPO 环氧丙烷等规聚合 IR 红外 LED 发光二极管 Li 锂 MAS 魔角旋转 ML 机器学习 MOF 金属有机骨架 MS 质谱或微秒 NIST 美国国家标准与技术研究所 NOx 氮氧化物 NSLS 美国国家同步加速器光源 PCAST 总统科学技术顾问委员会 PDF 对分布函数 PRD 重点研究方向 ps 皮秒 R&D 研究与开发 s 秒 SAXS 小角度 x 射线散射 SEM 扫描电子显微镜/显微镜 SLM 选择性激光熔化 ssNMR 固态核磁共振 TEM 透射电子显微镜/显微镜 YAG 钇铝石榴石
摘要:固体电解质是全固态电池(ASB)的关键成分。它在电极中需要增强锂电导率,并且可直接用作隔膜。锂填充石榴石材料 Li 7 La 3 Zr 2 O 12(LLZO)具有高锂电导率和对金属锂的化学稳定性,被认为是高能陶瓷 ASB 最有前途的固体电解质材料之一。然而,为了获得高电导率,需要使用钽或铌等稀土元素来稳定高导电立方相。这种稳定性也可以通过高含量的铝来实现,从而降低了 LLZO 的成本,但同时也降低了可加工性和锂电导率。为了找到石榴石基固态电池潜在市场引入的最佳点,可扩展且工业上可用的、具有高加工性和良好导电性的 LLZO 合成是必不可少的。本研究采用了四种不同的合成方法(固相反应(SSR)、溶液辅助固相反应(SASSR)、共沉淀(CP)和喷雾干燥(SD))来合成铝取代的 LLZO(Al:LLZO,Li 6.4 Al 0.2 La 3 Zr 2 O 12 ),并进行了比较,一方面关注电化学性能,另一方面关注可扩展性和环境足迹。这四种方法均成功合成,锂离子电导率为 2.0–3.3 × 10 −4 S/cm。通过使用湿化学合成法,煅烧时间可以从 850 °C 和 1000 °C 下的两个煅烧步骤(20 小时)减少到喷雾干燥法下 1000 °C 下仅 1 小时。我们能够将合成扩大到公斤级,并展示不同合成方法的大规模生产潜力。
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
行政区 DBN 学校名称 第 1 组/第 2 组 2024-25 年 M 1 01M015 PS 015 Roberto Clemente 第 2 组 M 1 01M020 PS 020 Anna Silver 第 1 组 M 1 01M034 PS 034 Franklin D. Roosevelt 第 1 组 M 1 01M063 The STAR Academy - PS63 第 1 组 M 1 01M064 PS 064 Robert Simon 第 1 组 M 1 01M110 PS 110 Florence Nightingale 第 1 组 M 1 01M134 PS 134 Henrietta Szold 第 1 组 M 1 01M140 PS 140 Nathan Straus 第 1 组 M 1 01M142 PS 142 Amalia Castro 第 1 组 M 1 01M184 PS 184m Shuang Wen 第 2 组M 1 01M188 PS 188 岛屿学校组 1 M 1 01M292 果园学院组 1 M 1 01M315 东村社区学校组 1 M 1 01M332 大学社区中学组 1 M 1 01M361 儿童工作室学校组 1 M 1 01M363 社区学校组 1 M 1 01M364 地球学校组 1 M 1 01M378 全球领袖学校组 1 M 1 01M448 大学社区高中组 1 M 1 01M450 东区社区学校组 1 M 1 01M458 福赛斯卫星学院组 1 M 1 01M515 下东区预科高中组 1 M 1 01M539 科学、技术和科学新探索组2 M 1 01M650 Cascades 高中 1 组 M 1 01M696 Bard 高中 大学预科 1 组 M 1 01M839 Tompkins Square 中学 1 组 M 2 02M001 PS 001 Alfred E. Smith 1 组 M 2 02M002 PS 002 Meyer London 1 组 M 2 02M003 PS 003 Charrette 学校 1 组 M 2 02M006 PS 006 Lillie D. Blake 2 组 M 2 02M011 PS 011:Sarah J. Garnet 小学 1 组 M 2 02M033 PS 033 Chelsea 预科 2 组 M 2 02M040 PS 040 Augustus Saint-Gaudens 2 组 M 2 02M041 PS 041 Greenwich Village 组1 M 2 02M042 PS 042 Benjamin Altman 组 1 M 2 02M047 47 美国手语和英语 S 组 1 M 2 02M051 PS 051 Elias Howe 组 2
嵌入绝缘固态基质中的稀土 (RE) 离子为量子计算和量子信息处理提供了一个有趣的平台。稀土离子的核自旋和电子晶体场 (CF) 能级可用于存储和操纵量子态。由于稀土离子量子态的相干时间较长,它们非常适合实现量子比特。最近已证明,失相时间范围从 CF 态之间的电子跃迁的 100 µ s [1] 到核跃迁的 1.3 s [2],甚至通过使用动态解耦 [3] 可长达 6 小时。此外,通过检测钇铝石榴石 (YAG) [4, 5]、钒酸钇 (YVO) [6] 和硅酸钇 (YSO) [7–9] 发射的光子,已经证明了读出单自旋态的可能性,这使得此类稀土离子系统成为量子技术的有希望的平台。一些稀土离子在电信使用的频率范围内表现出 CF 跃迁,这使得它们非常适合用作量子中继器 [10, 11]。以前利用稀土离子进行量子计算的方案提出利用 CF 态的电偶极相互作用,建议通过间接偶极阻塞效应实现 CNOT 门 [12–14]。在该方案中,来自控制量子位的偶极场会使目标量子位的跃迁频率发生偏移。这被用来实现具有脉冲序列的 CNOT 门,只有当控制位处于逻辑 1 态时,该门才有效。这里我们提出了一种基于磁偶极相互作用的更快的两量子比特门,该门的灵感来自文献 [15] 中利用硅中的磷供体实现的两量子比特门,类似于金刚石中氮空位中心的混合电子和核自旋方案 [16]。我们在图 1 中展示了基本原理,并在图 2 中展示了相关能量尺度的基础层次。
orcid ID:https://orcid.org/0000-0002-3745-8133出版物:[1] Ross N.L.和Meagher E.P.(1984)在模拟压缩下H 6 Si 2 O 7的分子轨道研究。美国矿物学家69:1145-1149。[2] Ross N.L。和McMillan P.(1984)MGSIO 3 Ilmenite的拉曼光谱。美国矿物学家69:719-721。[3] Akaogi M.,Ross N.L.,McMillan P.和Navrotsky A.(1984)Mg 2 SIO 4多晶型物(橄榄石,改性尖晶石和尖晶石) - 氧化物熔体溶液量热法,相位关系和晶格振动模型的热力学特性。美国矿物学家69:499-512。[4] Ross N.L., Akaogi M., Navrotsky A., Susaki J., and McMillan P. (1986) Phase transitions among the CaGeO 3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation.地球物理研究杂志91:4685-4696。[5] McKelvey M.J.,O'Bannon G.W.,Larson E.M.,Marzke R.F.,Eckert J.和Ross N.L.(1986)新离子插入化合物(NH 4 +)的合成,表征和性能0.22 Tis 2 0.22-。材料研究公告21:1323-1333。[6] McMillan P.F.和Ross N.L.(1987)Al 2 O 3圆锥和MGSIO 3 Ilmenite的热容量计算。矿物质的物理和化学14:225-234。[7] Ross N.L. 和Navrotsky A. (1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。 矿物质的物理和化学14:473-481。 美国矿物学家72:984-994。[7] Ross N.L.和Navrotsky A.(1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。矿物质的物理和化学14:473-481。美国矿物学家72:984-994。[8] Geisinger K.L.,Ross N.L.,McMillan P.和Navrotsky A.(1987)K 2 Si 4 O 9:玻璃,薄板和韦迪特型相的能量和振动光谱。[9] Hazen R.M.,Finger L.W.,Angel R.J.,PreWitt C.T.,Ross N.L.,Mao H.K.,Hadidiacos C.G.,Hor P.H.,Meng R.L.和Chu C.W.(1987)y-ba-cu-o超导体中相的晶体学描述。物理评论B35:7238-7241。[10] Hazen R.M.,PreWitt C.T.,Angel R.J.,Ross N.L.,Finger L.W.,Hadidiacos C.G.,Veblen D.R.,Heaney P.J.,Horp.j.,Hor P.H.,Meng R.L.,Sun Y.Y.,Wang Y.Q.
锂离子固态导体固态化学博士职位 100%,苏黎世,临时 功能无机材料组(KovalenkoLab)有一个博士职位。 职位描述 具有优异锂离子电导率的材料是推动电化学储能技术发展所必需的,例如用于便携式和移动应用的技术。在所研究的大量固体锂电解质材料中,设计具有高电化学稳定电压窗口的快速锂超离子导体仍然是一个巨大的挑战。最近,石榴石家族的锂固体电解质,如 Li 7 La 3 Zr 2 O 12 (LLZO),引起了研究界的关注,在室温下高达 1 mS cm −1 的高锂离子电导率下,表现出 0 至 6 V vs. Li + /Li 的显着电化学操作窗口。这个博士项目是一个激动人心的机会,可以探索新的 LLZO 锂离子导电无机陶瓷,了解锂的扩散途径,并深入表征它们与金属锂的化学和电化学兼容性。该项目将重点了解与新型 LLZO 化学结构方面相关的电荷传输机制,并开发合成 LLZO 的新化学方法。该项目本质上是多学科的,弥合了固态化学、纳米材料化学和电化学储能之间的差距,从而营造了一个高度激励的研究环境。职责/职位描述 - 研究 LLZO/Li 界面上锂的电化学电镀/剥离机制 - 开发基于 Li 7 La 3 Zr 2 O 12 的混合锂离子和电子传导的新型陶瓷电解质 - 准备同行评审的出版物并在国际会议上展示结果 您的个人资料 候选人应最近以优异的成绩获得化学、物理或工程学硕士学位。候选人应具有电化学储能方面的强大实验背景,并具有出色的固态化学知识。全固态锂离子电池方面的经验将是有益的。感兴趣吗?申请材料包括一封动机信、一份简历、2-3 封推荐信(最好由推荐人发送)、成绩单和任何其他相关文件,请发送至:Kostiantyn Kravchyk 博士(kravchyk@inorg.chem.ethz.ch)和 Maksym Kovalenko 教授(mvkovalenko@ethz.ch)。
自旋电子学领域的进步为技术提供了巨大的资源,使其在经典信息处理(如数据存储)的多个方面得到发展。现在,研究自旋电子学中尚未被广泛探索的量子信息途径至关重要。腔光磁学是一个新兴领域,它描述了磁振子与腔内电磁驻波的相互作用 [1,2]。磁振子与微波 (MW) 光子强烈相互作用,从而使得经典和量子信息处理和存储应用成为可能,这些应用具有相干操控的磁振子以及通信(光纤)和处理(超导量子比特)单元之间的上/下量子转换器 [3,4]。在本次演讲中,我们将从理论上探索经典和量子范围内微波腔中铁磁体的非线性,并评估量子信息的资源,即涨落压缩和二分纠缠 [5]。当包含所有其他磁振子模式时,我们使用非谐振子(Duffing)模型的(半)经典和量子分析对 Kittel 模式的稳态相空间进行分类。随后,我们计算了可蒸馏纠缠的非零界限,以及稳定态下混合磁振子模式二分配置的形成纠缠。在现实条件下,使用钇铁石榴石样品,可以在两个不同的光通道中通过实验获得预测的磁振子纠缠。[1] X. Zhang、C.-L. Zou、L. Jiang 和 HX Tang,Phys. Rev. Lett. 113, 156401 (2014)。[2] Y. Tabuchi、S. Ishino、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,Phys. Rev. Lett. 113, 083603 (2014)。 [3] A. Osada、R. Hisatomi、A. Noguchi、Y. Tabuchi、R. Yamazaki、K. Usami、M. Sadgrove、R. Yalla、M. Nomura 和 Y. Nakamura,物理学家。莱特牧师。 116, 223601 (2016)。 [4] Y. Tabuchi、S. Ishino、A. Noguchi、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,科学 349, 405 (2015)。 [5] M. Elyasi,YM Blanter,GEW Bauer,物理学家。修订版 B 101 (5), 054402 (2020)。
理学硕士(技术)地球物理学 GS-101 地质学 I 第一单元:地质学的基本假设、地质学与科学的关系 - 地质学的分支 - 地球的形状和尺寸、地球的结构、成分和起源 - 地壳、地幔、地核的外壳、外部动态过程 - 风化、风化地质工作、侵蚀和剥蚀、侵蚀循环、运输和沉积剂 - 黄土、地貌。沙漠类型。第二单元:地表流水的地质工作 - 溪流、河流及其发展。河流系统 - 蜿蜒、牛轭湖、洪泛平原、准平原和三角洲。地下水的地质工作 - 岩石的渗透性、岩石中的水类型 - 地下水的分类 - 泉水。矿产水-碳酸盐、硫化物和放射性水。喀斯特地貌、山体滑坡、湖泊和沼泽、河口。内部动态过程-构造错位、新构造运动、地震。岩浆作用-火山。海洋地质工作-海洋盆地-世界地貌特征、海底。海水温度、盐度。海洋破坏工作-近岸堆积形式-海洋各区域的沉积。海洋沉积物的分布。第三单元:地貌学的基本概念-地貌过程-地貌分布-排水模式-发展。流域、流域的形态分析。山坡的元素-山麓、山脊。与岩石类型、古河道、地下河道有关的地貌。土壤类型及其分类。印度主要地貌过程的演变。海洋地貌过程、沿海形态过程。野外和实验室地图比例尺、地形图、专题地图、地形和地貌剖面图。第四单元:火成岩、变质岩和沉积岩的结构、结构和化学分类及起源-岩石形成、花岗岩化。伟晶岩、金伯利岩和冈底岩的岩石学特征 - 沉积结构 - 砾岩、砂岩、页岩、石灰岩的岩石学特征。白云岩化过程。变质作用 - 页岩、千枚岩、片岩、片麻岩、大理石石英岩和麻粒岩的结构分类。第五单元:矿物科学、矿物的物理和光学特性。长石、云母、辉石、角闪石、橄榄石、石英和石榴石组的分类、结构和化学性质。粘土矿物、原生元素的成因和化学性质。4.5.晶体学要素、晶体轴、晶体的对称形式和晶体的分类。书籍:l. 物理地质学,G.Gorshkov,A.Yakushova 2。物理地质学,A.K.Datta 3。地质学教科书,P. K Mukherjee。岩石学原理,G.W.Tyrell。Rutleys 矿物学,H.M.Read 6。物理地质学,Arthur Holmes